도움말

Three Effective Top-Down Clustering Algorithms for Location Database Systems

Journal of Computing Science and Engineering Vol.4 No.2, 2010.6, 173-187 (15 pages)
인용정보 복사
Quick View Quick View
구매하기 6,000원
인용하기
이용수 : 17건
피인용수 : 0건
분야내 활용도 : 50%
자세히 보기 >

· 이용수 : 2010년부터 집계한 원문다운로드수

· 피인용수 : DBpia 논문 가운데 해당 논문을 인용한 논문수

· 분야내 활용도 : 최근 24개월간 DBpia 이용수를 기준으로 산출 / 0%에 가까울 수록 활용도가 높고, 100%에 가까울 수록 활용도가 낮음

초록
Recent technological advances in mobile communication systems have made explosive growth in the number of mobile device users worldwide. One of the most important issues in designing a mobile computing system is location management of users. The hierarchical systems had been proposed to solve the scalability problem in location management. The scalability problem occurs when there are too many users for a mobile system to handle, as the system is likely to react slow or even get down due to late updates of the location databases. In this paper, we propose a top-down clustering algorithm for hierarchical location database systems in a wireless network. A hierarchical location database system employs a tree structure. The proposed algorithm uses a top-down approach and utilizes the number of visits to each cell made by the users along with the movement information between a pair of adjacent cells. We then present a modified algorithm by incorporating the exhaustive method when there remain a few levels of the tree to be processed. We also propose a capacity constraint top-down clustering algorithm for more realistic environments where a database has a capacity limit. By the capacity of a database we mean the maximum number of mobile device users in the cells that can be handled by the database. This algorithm reduces a number of databases used for the system and improves the update performance. The experimental results show that the proposed, top-down, modified top-down, and capacity constraint top-down clustering algorithms reduce the update cost by 17.0%, 18.0%, 24.1%, the update time by about 43.0%, 39.0%, 42.3%, respectively. The capacity constraint algorithm reduces the average number of databases used for the system by 23.9% over other algorithms.

목차
1. INTRODUCTION
2. BACKGROUNDS
3. THE TOP-DOWN CLUSTERING ALGORITHMS
4. EXPERIMENTAL RESULTS
5. CONCLUSIONS
ACKNOWLEDGMENTS
REFERENCES
키워드

논문의 주요 키워드를 제공합니다. 키워드를 클릭하여 관련 논문을 확인해 보세요!

참고문헌 (0)

현재 논문의 참고문헌을 찾아 신청해주세요!

해당 논문은 참고문헌 정보가 없습니다.

인용된 논문 (0)

알림서비스 신청하고 '인용된 논문' 정보를 메일로 확인 하세요!

해당 논문은 인용된 논문 정보가 없습니다.

제 1 저자의 다른 논문 (21)

Kwang-Jo Lee 식별저자 저자의 상세정보를 확인해 보세요.

  • 처음
  •  
  • 이전
  •  
  • 1
  •  
  • 2
  •  
  • 3
  •  
  • 다음
  •  
  • 마지막
권호 내 다른 논문 (5)

Journal of Computing Science and Engineering Vol.4 No.2 의 상세정보를 확인해 보세요.

추천 논문 (5)

DBpia 추천논문과 함께 다운받은 논문을 제공합니다. 논문 초록의 텍스트마이닝과 이용 및 인용 관계 분석을 통해 추천해 드리는 연관논문을 확인해보세요.

DBpia 추천논문

더 많은 추천논문을 확인해 보세요!

함께 다운받은 논문

해당 논문은 함께 다운받은 논문 정보가 없습니다.

지표

이용현황

· 이용수

· 이용순위 상위 Top3

자세히 보기 >
No 상위 이용이관 이용수
1 국립중앙도서관 2
2 삼성전자 2
3 한양대학교 1

활용도

· 활용지수

· 논문의 활용도 추이 (주제분야 기준)

자세히 보기 >

: %

2016-09
2016-10
2016-11
2016-12
0
20
40
60
80
100
  • 0%
  • 20%
  • 40%
  • 60%
  • 80%
  • 100%

피인용수

상세정보
저작권 정책

누리미디어에서 제공되는 모든 저작물의 저작권은 원저작자에게 있으며, 누리미디어는 각 저작물의 내용을 보증하거나 책임을 지지 않습니다. 단, 누리미디어에서 제공되는 서지정보는 저작권법에 의해 보호를 받는 저작물로, 사전 허락 없이 임의로 대량 수집하거나 프로그램에 의한 주기적 수집 이용, 무단 전재, 배포하는 것을 금하며, 이를 위반할 경우, 저작권법 및 관련법령에 따라 민, 형사상의 책임을 질 수 있습니다.

맨 위로 이동