감성 강도를 고려한 감성 분석 평가집합 구축

Constructing an Evaluation Set for Korean Sentiment Analysis Systems Incorporating the Category and the Strength of Sentiment
한국콘텐츠학회논문지 제12권 제11호, 2012.11, 30-38 (9 pages)
인용정보 복사
Quick View Quick View
구매하기 6,000원
인용하기
이용수 : 341건
피인용수 : 0건
활용도 : 1%
자세히 보기 >

· 이용수 : 2010년부터 집계한 원문다운로드수

· 피인용수 : DBpia 논문 가운데 해당 논문을 인용한 논문수

· 활용도 : 최근 24개월간 DBpia 이용수를 기준으로 산출

초록
감성 분석은 블로그와 트위터 같은 다양한 소셜 미디어에서 사용자들이 표현하는 감정의 종류를 분석하고 추출하는 연구이다. 현재 감성 분석 연구는 꾸준히 계속되고 있지만, 한국어의 감성 분석 평가 집합은 아직 없다.
본 논문에서는 감성 분석을 평가할 수 있는 평가집합을 구축한다. 평가집합에서는 사용자의 감성에 대한 극성뿐만 아니라 감성의 종류와 강도까지 고려한 평가집합을 구축하였다. 이를 위해 감성의 종류는 긍정에서 7가지의 범주와 부정에서 15가지의 범주를 나누고, 각 범주별로 1~3까지의 강도를 설정하였다. 또한 각 범주에 속하는 어휘에 대해서도 1~3까지의 강도를 설정하였다. 평가집합의 데이터는 다양한 소셜 미디어에서 3,270 문장을 추출하여 구축하였으며, 각 문장에 대해 5 명이 감성의 종류와 강도를 태깅하였다. 구축한 평가집합에서 5명의 일치도는 극성의 경우 93 %, 감성의 종류는 70 %, 강도는 58 % 로 나타났다. 이는 독일어와 스페인어의 평가 집합 보다 일치도가 높게 나타났다. 이 결과는 제안한 평가 집합이 신뢰할 만한 자원으로 다른 감성 분석 시스템의 평가데이터로 사용될 수 있음을 보여준다.

Sentiment analysis is concerned with extracting and analyzing different kinds of user sentiment expressed in a variety of social media such as blog and twitter. Although sentiment analysis techniques are actively studied for these days, evaluation sets are not developed yet for Korean sentiment analysis.
In this paper, we constructed an evaluation set for Korean sentiment analysis. To evaluate sentiment analysis systems more throughly, each sentence in our evaluation set is tagged with the polarity of the sentiment as well as the category and the strength of the sentiment. We divide kinds of sentiment into 7 positive categories and 15 negative categories. Each category is given the strength of the sentiment from 1 to 3. Our evaluation set consists of 3,270 sentences extracted from various social media. For each sentence, 5 human taggers assigned the category and the strength of the sentiment expressed in the sentence. The ratio of inter-taggers agreement was 93% in the polarity, 70% in the category, 58% in the strength of sentiment. The ratio of inter-taggers agreement our evaluation set is a bit higher than other evaluation sets developed for German and Spanish. This result shows our evaluation set can be used as a reliable resource for the evaluation of sentiment analysis systems.

목차
요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 세부 감성 분류의 평가 집합 구축
Ⅳ. 평가집합 실험
Ⅴ. 결론
참고문헌
키워드

논문의 주요 키워드를 제공합니다. 키워드를 클릭하여 관련 논문을 확인해 보세요!

인용된 논문 (0)

알림서비스 신청하고 '인용된 논문' 정보를 메일로 확인 하세요!

해당 논문은 인용된 논문 정보가 없습니다.

제 1 저자의 다른 논문 (28)

김도연 식별저자 저자의 상세정보를 확인해 보세요.

  • 처음
  •  
  • 이전
  •  
  • 1
  •  
  • 2
  •  
  • 3
  •  
  • 다음
  •  
  • 마지막
권호 내 다른 논문 (50)

한국콘텐츠학회논문지 제12권 제11호 의 상세정보를 확인해 보세요.

  • 처음
  •  
  • 이전
  •  
  • 1
  •  
  • 2
  •  
  • 3
  •  
  • 4
  •  
  • 5
  •  
  • 다음
  •  
  • 마지막
추천 논문 (10)

DBpia 추천논문과 함께 다운받은 논문을 제공합니다. 논문 초록의 텍스트마이닝과 이용 및 인용 관계 분석을 통해 추천해 드리는 연관논문을 확인해보세요.

DBpia 추천논문

더 많은 추천논문을 확인해 보세요!

함께 다운받은 논문

지표

이용현황

· 이용수

· 이용순위 상위 Top3

자세히 보기 >
No 상위 이용이관 이용수
1 서울대학교 22
2 연세대학교 20
3 고려대학교 16

활용도

· 활용지수

· 논문의 활용도 추이 (주제분야 기준)

자세히 보기 >

: %

2016-09
2016-10
2016-11
2016-12
0
20
40
60
80
100
  • 0%
  • 20%
  • 40%
  • 60%
  • 80%
  • 100%

인용수

상세정보
저작권 정책

누리미디어에서 제공되는 모든 저작물의 저작권은 원저작자에게 있으며, 누리미디어는 각 저작물의 내용을 보증하거나 책임을 지지 않습니다. 단, 누리미디어에서 제공되는 서지정보는 저작권법에 의해 보호를 받는 저작물로, 사전 허락 없이 임의로 대량 수집하거나 프로그램에 의한 주기적 수집 이용, 무단 전재, 배포하는 것을 금하며, 이를 위반할 경우, 저작권법 및 관련법령에 따라 민, 형사상의 책임을 질 수 있습니다.

맨 위로 이동
  • 개인회원으로 로그인하셔야 이용이 가능합니다.
  •  개인회원
  •  기관회원
  • 소속기관
  • 아이디
  • 비밀번호
  • 개인회원가입으로 더욱 편리하게 이용하세요. 일반회원 가입하기

    아이디/비밀번호를 잊으셨나요? 아이디/비밀번호 찾기