한국어 텍스트 문장정렬을 위한 개체격자 접근법과 LSA 기반 접근법의 활용연구

A comparative study of Entity-Grid and LSA models on Korean sentence ordering
인지과학 제24권 제4호, 2013.12, 301-321 (21 pages)
인용정보 복사
Quick View Quick View
구매하기 6,000원
인용하기
이용수 : 122건
피인용수 : 0건
분야내 활용도 : 21%
자세히 보기 >

· 이용수 : 2010년부터 집계한 원문다운로드수

· 피인용수 : DBpia 논문 가운데 해당 논문을 인용한 논문수

· 분야내 활용도 : 최근 24개월간 DBpia 이용수를 기준으로 산출 / 0%에 가까울 수록 활용도가 높고, 100%에 가까울 수록 활용도가 낮음

초록
본 논문은 텍스트의 응집도 측정과 텍스트 자동생성 시스템을 위한 기초기술 중 하나인 문장정렬 과제에 대한 연구로, 개체기반적(entity-based) 접 근의 한 유형인 개체격 자 모형(Entity-Grid model)과 벡터공간 모형에 기 반한 LSA(Latent Semantic Analysis)를 모두 시도하고 결과를 서로 비교하였다. 개체격자 모형에 대한 기존 연구들에서 논의된 명사들의 통사역 (syntactic role) 정보가 한국어 텍스트 정렬 과제에 미치는 영향을 실험하고자 하였으며, 기존 독일어권 응용연구 결과와는 달리 긍정적인 결과를 얻었다. 이 과정에서 한국어의 격조사를 활용하는 전략을 취했으며, 이는 한국어의 격표지 정보가 한국어 텍스트의 응집성을 측정하는 데에 유용할 수 있다는 점을 보인 것이다. 그리고 개체격자 모형을 통한 결과를 LSA 기반 모형결과와 비교하여 양 모형의 장단점과 향후 개선점을 아울러 논의하였다.

For the task of sentence ordering, this paper attempts to utilize the Entity-Grid model, a type of entity-based modeling approach, as well as Latent Semantic analysis, which is based on vector space modeling, The task is well known as one of the fundamental tools used to measure text coherence and to enhance text generation processes. For the implementation of the Entity-Grid model, we attempt to use the syntactic roles of the nouns in the Korean text for the ordering task, and measure its impact on the result, since its contribution has been discussed in previous research. Contrary to the case of German, it shows a positive result. In order to obtain the information on the syntactic roles, we use a strategy of using Korean case-markers for the nouns. As a result, it is revealed that the cues can be helpful to measure text coherence. In addition, we compare the results with the ones of the LSA-based model, discussing the advantages and disadvantages of the models, and options for future studies.

목차
서론
관련연구
한국어 텍스트의 개체격자 표상(Entity-Grid representation)
개체격자 표상의 자질벡터 추출
LSA에 기반한 텍스트 응집성 측정
실험
결과
논의 및 결론
참고문헌
Abstract
키워드

논문의 주요 키워드를 제공합니다. 키워드를 클릭하여 관련 논문을 확인해 보세요!

인용된 논문 (0)

알림서비스 신청하고 '인용된 논문' 정보를 메일로 확인 하세요!

해당 논문은 인용된 논문 정보가 없습니다.

제 1 저자의 다른 논문 (0)

김영삼 식별저자 저자의 상세정보를 확인해 보세요.

해당 논문은 제 1저자의 다른 논문 정보가 없습니다.

권호 내 다른 논문 (5)

인지과학 제24권 제4호 의 상세정보를 확인해 보세요.

추천 논문 (10)

DBpia 추천논문과 함께 다운받은 논문을 제공합니다. 논문 초록의 텍스트마이닝과 이용 및 인용 관계 분석을 통해 추천해 드리는 연관논문을 확인해보세요.

DBpia 추천논문

더 많은 추천논문을 확인해 보세요!

함께 다운받은 논문

지표

이용현황

· 이용수

· 이용순위 상위 Top3

자세히 보기 >
No 상위 이용이관 이용수
1 서울대학교 21
2 한국외국어대학교 6
3 성균관대학교 6

활용도

· 활용지수

· 논문의 활용도 추이 (주제분야 기준)

자세히 보기 >

: %

2016-09
2016-10
2016-11
2016-12
0
20
40
60
80
100
  • 0%
  • 20%
  • 40%
  • 60%
  • 80%
  • 100%

인용수

상세정보
저작권 정책

누리미디어에서 제공되는 모든 저작물의 저작권은 원저작자에게 있으며, 누리미디어는 각 저작물의 내용을 보증하거나 책임을 지지 않습니다. 단, 누리미디어에서 제공되는 서지정보는 저작권법에 의해 보호를 받는 저작물로, 사전 허락 없이 임의로 대량 수집하거나 프로그램에 의한 주기적 수집 이용, 무단 전재, 배포하는 것을 금하며, 이를 위반할 경우, 저작권법 및 관련법령에 따라 민, 형사상의 책임을 질 수 있습니다.

맨 위로 이동
  • 개인회원으로 로그인하셔야 이용이 가능합니다.
  •  개인회원
  •  기관회원
  • 소속기관
  • 아이디
  • 비밀번호
  • 개인회원가입으로 더욱 편리하게 이용하세요. 일반회원 가입하기

    아이디/비밀번호를 잊으셨나요? 아이디/비밀번호 찾기