샘플링 기법의 보완을 통한 RRT* 기반 온라인 이동 계획의 성능 개선

Improvement of Online Motion Planning based on RRT* by Modification of the Sampling Method
제어로봇시스템학회 논문지 제22권 제3호, 2016.3, 192-198 (7 pages)
인용정보 복사
Quick View Quick View
구매하기 6,000원
인용하기
이용수 : 62건
피인용수 : 0건
분야내 활용도 : 3%
자세히 보기 >

· 이용수 : 2010년부터 집계한 원문다운로드수

· 피인용수 : DBpia 논문 가운데 해당 논문을 인용한 논문수

· 분야내 활용도 : 최근 24개월간 DBpia 이용수를 기준으로 산출 / 0%에 가까울 수록 활용도가 높고, 100%에 가까울 수록 활용도가 낮음

초록
Motion planning problem is still one of the important issues in robotic applications. In many real-time motion planning problems, it is advisable to find a feasible solution quickly and improve the found solution toward the optimal one before the previously-arranged motion plan ends. For such reasons, sampling-based approaches are becoming popular for real-time application. Especially the use of a rapidly exploring random tree* (RRT*) algorithm is attractive in real-time application, because it is possible to approach an optimal solution by iterating itself. This paper presents a modified version of informed RRT* which is an extended version of RRT* to increase the rate of convergence to optimal solution by improving the sampling method of RRT*. In online motion planning, the robot plans a path while simultaneously moving along the planned path. Therefore, the part of the path near the robot is less likely to be sampled extensively. For a better solution in online motion planning, we modified the sampling method of informed RRT* by combining with the sampling method to improve the path nearby robot. With comparison among basic RRT*, informed RRT* and the proposed RRT* in online motion planning, the proposed RRT* showed the best result by representing the closest solution to optimum.

목차
Abstract
Ⅰ. 서론
Ⅱ. 알고리즘
Ⅲ. 시뮬레이션
Ⅳ. 결론
REFERENCES
키워드

논문의 주요 키워드를 제공합니다. 키워드를 클릭하여 관련 논문을 확인해 보세요!

참고문헌 (9)

현재 논문의 참고문헌을 찾아 신청해주세요!

  1. G.-Y. Song and J.-W. Lee, “Path planning for autonomous navigation of a driverless ground vehicle based on waypoints,” Journal of Institute of Control, Robotics and Systems (in Korean), vol. 20, no. 2, pp. 211-217, Feb. 2014

  2. L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic roadmaps for path planning in high-dimensional configuration spaces,” Robotics and Automation, IEEE Transactions on, vol. 12, no. 4, pp. 566-580, Aug. 1996.

  3. S. M. LaValle, “Rapidly-Exploring Random Trees A New Tool for Path Planning,” 1998.

  4. Y. Kuwata, S. Karaman, J. Teo, E. Frazzoli, J. P. How, and G. Fiore, “Real-time motion planning with applications to autonomous urban driving,” Control Systems Technology, IEEE Transactions on, vol. 17, no. 5, pp. 1105-1118, Sep. 2009.

  5. Karaman, Sertac, and Emilio Frazzoli, “Incremental sam- pling-based algorithms for optimal motion planning,” arXiv preprint arXiv:1005.0416, May 2010.

  6. D. Lee and D. H. Shim, “Optimal path planner considering real terrain for fixed-wing UAVs,” Journal of Institute of Control, Robotics and Systems (in Korean), vol. 20, no. 12, pp. 1272-1277, Dec. 2014.

  7. S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller, “Anytime motion planning using the RRT*,” Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE, pp. 1478-1483, May 2011.

  8. F. Islam, J. Nasir, U. Malik, Y. Ayaz, and O. Hasan, “RRT∗-smart: Rapid convergence implementation of rrt ∗ towards optimal solution,” Mechatronics and Automation (ICMA), 2012 International Conference on. IEEE, pp. 1651-1656, Aug. 2012.

  9. J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed RRT*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic,” 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp. 2997-3004, Sep. 2014.

인용된 논문 (0)

알림서비스 신청하고 '인용된 논문' 정보를 메일로 확인 하세요!

해당 논문은 인용된 논문 정보가 없습니다.

제 1 저자의 다른 논문 (25)

이희범 식별저자 저자의 상세정보를 확인해 보세요.

  • 처음
  •  
  • 이전
  •  
  • 1
  •  
  • 2
  •  
  • 3
  •  
  • 다음
  •  
  • 마지막
권호 내 다른 논문 (11)

제어로봇시스템학회 논문지 제22권 제3호 의 상세정보를 확인해 보세요.

  • 처음
  •  
  • 이전
  •  
  • 1
  •  
  • 2
  •  
  • 다음
  •  
  • 마지막
추천 논문 (10)

DBpia 추천논문과 함께 다운받은 논문을 제공합니다. 논문 초록의 텍스트마이닝과 이용 및 인용 관계 분석을 통해 추천해 드리는 연관논문을 확인해보세요.

DBpia 추천논문

더 많은 추천논문을 확인해 보세요!

함께 다운받은 논문

지표

이용현황

· 이용수

· 이용순위 상위 Top3

자세히 보기 >
No 상위 이용이관 이용수
1 서울대학교 12
2 LIG넥스원 7
3 충남대학교 5

활용도

· 활용지수

· 논문의 활용도 추이 (주제분야 기준)

자세히 보기 >

: %

2016-09
2016-10
2016-11
2016-12
0
20
40
60
80
100
  • 0%
  • 20%
  • 40%
  • 60%
  • 80%
  • 100%

인용수

상세정보
저작권 정책

누리미디어에서 제공되는 모든 저작물의 저작권은 원저작자에게 있으며, 누리미디어는 각 저작물의 내용을 보증하거나 책임을 지지 않습니다. 단, 누리미디어에서 제공되는 서지정보는 저작권법에 의해 보호를 받는 저작물로, 사전 허락 없이 임의로 대량 수집하거나 프로그램에 의한 주기적 수집 이용, 무단 전재, 배포하는 것을 금하며, 이를 위반할 경우, 저작권법 및 관련법령에 따라 민, 형사상의 책임을 질 수 있습니다.

맨 위로 이동
  • 개인회원으로 로그인하셔야 이용이 가능합니다.
  •  개인회원
  •  기관회원
  • 소속기관
  • 아이디
  • 비밀번호
  • 개인회원가입으로 더욱 편리하게 이용하세요. 일반회원 가입하기

    아이디/비밀번호를 잊으셨나요? 아이디/비밀번호 찾기