도움말

협업 필터링과 빈발 패턴을 이용한 개인화된 그룹 추천

Personalized Group Recommendation Using Collaborative Filtering and Frequent Pattern
한국통신학회논문지 제41권 제7호, 2016.7, 768-774 (7 pages)
인용정보 복사
Quick View Quick View
구매하기 6,000원
인용하기
이용수 : 103건
피인용수 : 0건
분야내 활용도 : 3%
자세히 보기 >

· 이용수 : 2010년부터 집계한 원문다운로드수

· 피인용수 : DBpia 논문 가운데 해당 논문을 인용한 논문수

· 분야내 활용도 : 최근 24개월간 DBpia 이용수를 기준으로 산출 / 0%에 가까울 수록 활용도가 높고, 100%에 가까울 수록 활용도가 낮음

초록
본 논문에서는 개인화 서비스를 제공하기 위해 책, 음악, 영화 등과 같이 단일 항목을 추천하는 기존 방법의 한계를 극복하고, 패션, 요리 등과 같이 연관성에 따른 항목의 조합, 즉 그룹을 추천하는 방법을 다룬다. 협업 필터링은 사용자 간의 유사도를 측정하여 비슷한 성향의 사용자들이 선택한 항목을 추천하는 방법이며, 사용자의 성향을 예측할 수 있다는 장점이 있다. 본 논문에서는 이러한 협업 필터링과 연관 규칙을 바탕으로 빈발 항목 집합을 생성하고, 그룹 간의 유사도에 따라 그룹을 추천하는 알고리즘을 제안한다. 제안하는 방법의 타당성을 검증하기 위하여 의류 전자상거래에서 4개월 동안 소비자가 구매한 목록 데이터로 실험을 수행하였다.

This paper deals with a method to recommend the combination of items as a group according to similarity to handle application area such as fashion and cooking, while the previous methods recommend single item such as a book, music or movie. Collaborative filtering is a method to recommend an item selected by users with similar tendency based on similarity between users. In this paper, the proposed method generates a set of frequent items based on collaborative filtering and association rules and recommends a group by similarity between groups. To show the validity of the proposed method, experiments are performed with purchase data collected from e-commerce for four months.

목차
요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 기존의 연구 방법
Ⅲ. 그룹 추천 시스템
Ⅳ. 실험 결과
Ⅴ. 결론
References
키워드

논문의 주요 키워드를 제공합니다. 키워드를 클릭하여 관련 논문을 확인해 보세요!

참고문헌 (0)

현재 논문의 참고문헌을 찾아 신청해주세요!

해당 논문은 참고문헌 정보가 없습니다.

인용된 논문 (0)

알림서비스 신청하고 '인용된 논문' 정보를 메일로 확인 하세요!

해당 논문은 인용된 논문 정보가 없습니다.

제 1 저자의 다른 논문 (0)

김정우 식별저자 저자의 상세정보를 확인해 보세요.

해당 논문은 제 1저자의 다른 논문 정보가 없습니다.

권호 내 다른 논문 (18)

한국통신학회논문지 제41권 제7호 의 상세정보를 확인해 보세요.

  • 처음
  •  
  • 이전
  •  
  • 1
  •  
  • 2
  •  
  • 다음
  •  
  • 마지막
추천 논문 (10)

DBpia 추천논문과 함께 다운받은 논문을 제공합니다. 논문 초록의 텍스트마이닝과 이용 및 인용 관계 분석을 통해 추천해 드리는 연관논문을 확인해보세요.

DBpia 추천논문

더 많은 추천논문을 확인해 보세요!

함께 다운받은 논문

지표

이용현황

· 이용수

· 이용순위 상위 Top3

자세히 보기 >
No 상위 이용이관 이용수
1 고려대학교 8
2 중앙대학교 서울캠퍼스 8
3 홍익대학교 7

활용도

· 활용지수

· 논문의 활용도 추이 (주제분야 기준)

자세히 보기 >

: %

2016-09
2016-10
2016-11
2016-12
0
20
40
60
80
100
  • 0%
  • 20%
  • 40%
  • 60%
  • 80%
  • 100%

피인용수

상세정보
저작권 정책

누리미디어에서 제공되는 모든 저작물의 저작권은 원저작자에게 있으며, 누리미디어는 각 저작물의 내용을 보증하거나 책임을 지지 않습니다. 단, 누리미디어에서 제공되는 서지정보는 저작권법에 의해 보호를 받는 저작물로, 사전 허락 없이 임의로 대량 수집하거나 프로그램에 의한 주기적 수집 이용, 무단 전재, 배포하는 것을 금하며, 이를 위반할 경우, 저작권법 및 관련법령에 따라 민, 형사상의 책임을 질 수 있습니다.

맨 위로 이동