도움말

Adaptive Prediction Method Based on Alternating Decision Forests with Considerations for Generalization Ability

Industrial Engineering & Management Systems Vol.16 No.3, 2017.9, 384-391 (8 pages)
DOI :10.7232/iems.2017.16.3.384
인용정보 복사
Quick View Quick View
구매하기 6,000원
인용하기
이용수 : 1건
피인용수 : 0건
분야내 활용도 : %
자세히 보기 >

· 이용수 : 2010년부터 집계한 원문다운로드수

· 피인용수 : DBpia 논문 가운데 해당 논문을 인용한 논문수

· 분야내 활용도 : 최근 24개월간 DBpia 이용수를 기준으로 산출 / 0%에 가까울 수록 활용도가 높고, 100%에 가까울 수록 활용도가 낮음

초록
Many machine learning algorithms have been proposed and applied to a wide range of prediction problems in the field of industrial management. Lately, the amount of data is increasing and machine learning algorithms with low computational costs and efficient ensemble methods are needed. Alternating Decision Forest (ADF) is an efficient ensemble method known for its high performance and low computational costs. ADFs introduce weights representing the degree of prediction accuracy for each piece of training data and randomly select attribute variables for each node. This method can effectively construct an ensemble model that can predict training data accurately while allowing each decision tree to retain different features. However, outliers can cause overfitting, and since candidates of branch conditions vary for nodes in ADFs, there is a possibility that prediction accuracy will deteriorate because the fitness of training data is highly restrained. In order to improve prediction accuracy, we focus on the prediction results for new data. That is to say, we introduce bootstrap sampling so that the algorithm can generate out-of-bag (OOB) datasets for each tree in the training phase. Additionally, we construct an effective ensemble of decision trees to improve generalization ability by considering the prediction accuracy for OOB data. To verify the effectiveness of the proposed method, we conduct simulation experiments using the UCI machine learning repository. This method provides robust and accurate predictions for datasets with many attribute variables.

목차
ABSTRACT
1. INTRODUCTION
2. PRELIMINARIES
3. PROPOSED METHOD
4. EXPERIMENT
5. CONCLUSIONS AND FUTURE WORK
REFERENCES
키워드

논문의 주요 키워드를 제공합니다. 키워드를 클릭하여 관련 논문을 확인해 보세요!

참고문헌 (0)

현재 논문의 참고문헌을 찾아 신청해주세요!

해당 논문은 참고문헌 정보가 없습니다.

인용된 논문 (0)

알림서비스 신청하고 '인용된 논문' 정보를 메일로 확인 하세요!

해당 논문은 인용된 논문 정보가 없습니다.

제 1 저자의 다른 논문 (0)

Shotaro Misawa 식별저자 저자의 상세정보를 확인해 보세요.

해당 논문은 제 1저자의 다른 논문 정보가 없습니다.

권호 내 다른 논문 (16)

Industrial Engineering & Management Systems Vol.16 No.3 의 상세정보를 확인해 보세요.

  • 처음
  •  
  • 이전
  •  
  • 1
  •  
  • 2
  •  
  • 다음
  •  
  • 마지막
추천 논문 (0)

DBpia 추천논문과 함께 다운받은 논문을 제공합니다. 논문 초록의 텍스트마이닝과 이용 및 인용 관계 분석을 통해 추천해 드리는 연관논문을 확인해보세요.

DBpia 추천논문

해당 논문은 DBpia 추천논문 정보가 없습니다.

함께 다운받은 논문

해당 논문은 함께 다운받은 논문 정보가 없습니다.

지표

이용현황

· 이용수

· 이용순위 상위 Top3

자세히 보기 >
No 상위 이용이관 이용수

활용도

· 활용지수

· 논문의 활용도 추이 (주제분야 기준)

자세히 보기 >

: %

2016-09
2016-10
2016-11
2016-12
0
20
40
60
80
100
  • 0%
  • 20%
  • 40%
  • 60%
  • 80%
  • 100%

인용수

상세정보
저작권 정책

누리미디어에서 제공되는 모든 저작물의 저작권은 원저작자에게 있으며, 누리미디어는 각 저작물의 내용을 보증하거나 책임을 지지 않습니다. 단, 누리미디어에서 제공되는 서지정보는 저작권법에 의해 보호를 받는 저작물로, 사전 허락 없이 임의로 대량 수집하거나 프로그램에 의한 주기적 수집 이용, 무단 전재, 배포하는 것을 금하며, 이를 위반할 경우, 저작권법 및 관련법령에 따라 민, 형사상의 책임을 질 수 있습니다.

맨 위로 이동
  • 개인회원으로 로그인하셔야 이용이 가능합니다.
  •  개인회원
  •  기관회원
  • 소속기관
  • 아이디
  • 비밀번호
  • 개인회원가입으로 더욱 편리하게 이용하세요. 일반회원 가입하기

    아이디/비밀번호를 잊으셨나요? 아이디/비밀번호 찾기