본문 바로가기
[학술저널]

  • 학술저널

한동일(세종대학교) 최종호(세종대학교) 유성준(세종대학교) 오세창(세종사이버대학교) 조재일(한국전자통신연구원)

표지

북마크 0

리뷰 0

이용수 193

피인용수 0

초록

본 논문에서는 기존의 방법에 비해서 사용되는 메모리의 증가가 없이, 혹은 메모리의 증가를 최소화하는 영상 메모리의 회전 변환 기법을 개발하여 얼굴 회전 변화에 강인한 고성능 실시간 얼굴 검출 엔진 구조를 제안하였으며 FPGA 구현을 통하여 제안 구조의 타당성을 검증하였다. 고성능 얼굴 검출을 위해 기존에 사용하던 조명 변화에 강인한 MCT(Modified Census Transform) 변환 기법과 최적화된 학습데이터 생성을 위한 Adaboost 학습 기법 이외에 얼굴 회전 변환에 강인함을 위한 영상 회전 기법을 이용하였다. 제안한 하드웨어 구조는 색좌표 변환부, 잡음 제거부, 메모리 인터페이스부, 영상 회전부, 크기 조정부, MCT 생성부, 얼굴 후보 검출부/ 신뢰도 비교부, 좌표 재조정부, 데이터 검증부, 검출 결과 표시부/ 컬러 기반 검출 결과 표시부로 구성되어있다. 구현 및 검증을 위해 Virtex5 LX330 FPGA 보드와 QVGA급 CMOS 카메라, LCD Display를 이용하였으며, 다양한 실생활 환경 및 얼굴 검출 표준 데이터베이스에 대해서 뛰어난 성능을 나타냄을 검증하였다. 결과적으로 실생활 환경에서 초당 60프레임 이상의 속도로 실시간 처리가 가능하며, 조명 변화 및 얼굴 회전 변화에 강인하고, 동시에 32개의 다양한 크기의 얼굴 검출이 가능한 고성능 실시간 얼굴 검출 엔진을 개발하였다.

In this paper, we propose the structure of a high-performance face-detection engine that responds well to facial rotating changes using rotation transformation which minimize the required memory usage compared to the previous face-detection engine. The validity of the proposed structure has been verified through the implementation of FPGA. For high performance face detection, the MCT (Modified Census Transform) method, which is robust against lighting change, was used. The Adaboost learning algorithm was used for creating optimized learning data. And the rotation transformation method was added to maintain effectiveness against face rotating changes. The proposed hardware structure was composed of Color Space Converter, Noise Filter, Memory Controller Interface, Image Rotator, Image Scaler, MCT(Modified Census Transform), Candidate Detector / Confidence Mapper, Position Resizer, Data Grouper, Overlay Processor / Color Overlay Processor. The face detection engine was tested using a Virtex5 LX330 FPGA board, a QVGA grade CMOS camera, and an LCD Display. It was verified that the engine demonstrated excellent performance in diverse real life environments and in a face detection standard database. As a result, a high performance real time face detection engine that can conduct real time processing at speeds of at least 60 frames per second, which is effective against lighting changes and face rotating changes and can detect 32 faces in diverse sizes simultaneously, was developed.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 얼굴 검출을 위한 영상의 회전 기법
Ⅲ. 제안한 하드웨어 구조
Ⅳ. 실험 및 검증 결과
Ⅴ. 결론
참고문헌
저자소개

참고문헌(0)

리뷰(0)

도움이 되었어요.0

도움이 안되었어요.0

첫 리뷰를 남겨주세요.
Insert title here