본문 바로가기
[학술대회자료]

SURF(Speeded Up Robust Features)와 Kalman Filter를 이용한 컬러 객체 추적 방법의 제안

  • 학술대회자료

SURF(Speeded Up Robust Features)와 Kalman Filter를 이용한 컬러 객체 추적 방법의 제안

Improvement method of tracking speed for color object using Kalman filter and SURF

이희재(가톨릭대학교) 김재호(가톨릭대학교) 정우혁(가톨릭대학교) 이다빛(가톨릭대학교) 이상국(가톨릭대학교)

표지

북마크 0

리뷰 0

이용수 73

피인용수 0

초록

객체 인식과 추적(object recognition and tracking)은 컴퓨터 비전의 중요 분야로써 작게는 동작 인식으로부터 크게는 우주 항공까지 그 활용 가능성이 무궁무진하다. 객체 인식의 정확도를 향상시키는 방법 중 하나는 방향, 스케일 그리고 가려짐에 강건한 컬러를 이용하는 것이다. 컬러를 이용함으로써 더 많은 특징점들을 추출하기 위한 계산 비용을 감소시킬 수 있다. 또한, 빠른 객체 인식을 위해 알고리즘의 정확도를 낮추는 것보다 객체의 위치를 예측하고 좀 더 작은 영역에서 인식을 수행하는 것이 더욱 효과적이다. 본 논문은, 인식 정확도를 향상시키기 위해 대표적인 객체 인식 알고리즘인 SURF와 컬러모델을 적용한 기술자(descriptor)를 사용하고, 움직임 예측 알고리즘인 Kalman filter를 결합하여 빠른 객체 추적 방법을 제안한다. 그 결과, 제안하는 방법은 다른 컬러를 갖는 같은 패턴의 객체들을 구분하고, 객체의 향후 움직임을 미리 예측한 관심영역(ROI)에서 인식을 수행함으로써 빠른 추적 결과를 보였다.

As an important part of the Computer Vision, the object recognition and tracking function has infinite possibilities range from motion recognition to aerospace applications. One of methods to improve accuracy of the object recognition, are uses colors which have robustness of orientation, scale and occlusion. Computational cost for extracting features can be reduced by using color. Also, for fast object recognition, predicting the location of the object recognition in a smaller area is more effective than lowering accuracy of the algorithm. In this paper, we propose a method that uses SURF descriptors which applied with color model for improving recognition accuracy and combines with Kalman filter which is Motion estimation algorithm for fast object tracking. As a result, the proposed method classified objects which have same patterns with different colors and showed fast tracking results by performing recognition in ROI which estimates future motion of an object.

목차

요약
Abstract
1. 서론
2. 컬러 정보를 갖는 기술자 생성 및 예측 알고리즘의 결합
3. 실험 및 결과
4. 결론
참고문헌

참고문헌(0)

리뷰(0)

도움이 되었어요.0

도움이 안되었어요.0

첫 리뷰를 남겨주세요.
Insert title here