본문 바로가기
[학술저널]

  • 학술저널

양병주(삼성테크윈) 심준호(숙명여자대학교)

표지

북마크 0

리뷰 0

이용수 64

피인용수 0

초록

방대한 량의 전자상거래 데이터 객체를 다루는데 같거나 유사한 객체들을 찾는 유사도 측정은 중요하다. 객체간 유사도 측정은 객체 쌍의 유사도 측정값을 비교하므로 객체 량이 많아질수록 오랜 시간이 걸린다. 최근의 여러 유사도 측정 연구에선 이를 더 효율적으로 수행하는 기법을 제시하고 실제 데이터 셋에서 그 성능을 평가해왔다. 본 논문에서는 이들 연구에서 사용하는 데이터 셋의 특성과 실험에서 사용되는 쓰레숄드 값이 가지는 의미에 대해 분석해본다. 이러한 분석은 새로운 유사도 측정 기법의 성능 평가 실험의 참조 기준을 제시하는 역할을 한다.

In the e-business domain where data objects are quantitatively large, measuring similarity to find the same or similar objects is important. It basically requires comparing and computing the features of objects in pairs, and therefore takes longer time as the amount of data becomes bigger. Recent studies have shown various algorithms to efficiently perform it. Most of them show their performance superiority by empirical tests over some sets of data. In this paper, we introduce those data sets, present their characteristics and the meaningful threshold values that each of data sets contain in nature. The analysis on practical data sets with respect to their threshold values may serve as a referential baseline to the future experiments of newly developed algorithms.

목차

초록
ABSTRACT
1. 서론
2. 관련 연구
3. 데이터 셋
4. 쓰레숄드 분석
5. 맺음말
References
저자소개

리뷰(0)

도움이 되었어요.0

도움이 안되었어요.0

첫 리뷰를 남겨주세요.
Insert title here