본문 바로가기
[학술저널]

  • 학술저널

백봉현(Yeungnam University) 하일규(Yeungnam University) 안병철(Yeungnam University)

표지

북마크 0

리뷰 0

이용수 582

피인용수 0

초록

Recently, with the remarkable increase of social network services, it is necessary to extract interesting information from lots of data about various individual opinions and preferences on SNS(Social Network Service). The sentiment information can be applied to various fields of society such as politics, public opinions, economics, personal services and entertainments. To extract sentiment information, it is necessary to use processing techniques that store a large amount of SNS data, extract meaningful data from them, and search the sentiment information. This paper proposes an efficient method to extract sentiment information from various unstructured big data on social networks using HDFS(Hadoop Distributed File System) platform and MapReduce functions. In experiments, the proposed method collects and stacks data steadily as the number of data is increased. When the proposed functions are applied to sentiment analysis, the system keeps load balancing and the analysis results are very close to the results of manual work.

목차

ABSTRACT
1. 서론
2. 비정형 SNS 감성 데이터 분석 방법 제안
3. 실험 결과 및 고찰
4. 결론
REFERENCE

참고문헌(18)

  • 1.

    , , Big Data: The Next Frontier for Innovation, Competition, and Productivity

  • 2.

    , , Hadoop ECO system

  • 3.

    김석중 , 2014 , 타임라인의 감정추출을 통한 트위터 사용자의 정치적 성향 분석 , 멀티미디어학회논문지 17 (1) : 43 ~ 51

  • 4.

    송민구 , 2013 , 빅데이터 분석방법을 이용한 예측모형의 신뢰도 향상에 관한 연구 , 디지털융복합연구 11 (6) : 103 ~ 112

  • 5.

    이병엽 , 2013 , 빅 데이터를 이용한 소셜 미디어 분석 기법의 활용 , 한국콘텐츠학회 논문지 13 (2) : 211 ~ 219

리뷰(0)

도움이 되었어요.0

도움이 안되었어요.0

첫 리뷰를 남겨주세요.
Insert title here