본문 바로가기
[학술저널]

  • 학술저널

송은지(남서울대학교)

이 논문을 2019-09-16 에 이용했습니다. 발행기관의 요청으로 개인이 구매하실 수 없습니다.

표지

북마크 0

리뷰 0

이용수 493

피인용수 0

초록

SNS 등과 같은 소셜 미디어는 실시간으로 자발적인 고객의 의견들을 대거 포함하고 있어 최근 기업들은 효율적인 경영을 위해 소셜 미디어상의 빅 데이터를 분석하는 시스템을 이용하여 고객피드백에 관한 정보를 수집하고 분석하고 있다. 그러나 온라인 사이트에서 수집한 데이터는 띄어쓰기와 철자 오류가 많아 기존의 형태소 분석기로는 정확한 분석을 할 수 없다. 또한 온라인 상의 문장은 짧다는 특징이 있어 상호 정보량, 카이제곱 통계량 등과 같은 기존의 의미 선택 방법을 이용하게 되면 문장 내 선택 할 수 있는 의미의 부재로 인해 정확한 감성 분류를 할 수 없다는 문제점이 있다. 이러한 문제점들을 해결하기 위해서 본 논문에서는 초/중성 및 어절 패턴 사전을 이용해서 보정할 수 있는 모듈과 문장 내 품사의 우선순위를 이용한 의미 선택 방법을 제안한다. 이러한 방법으로 형태소 분석기에서 추출된 품사 정보를 기반으로 용언과 체언을 분리해서 분석 해당 품사에 종속적인 속성 DB 구축 한 후 학습에 의해 누적된 속성 DB를 사용하여 보다 정확한 긍/부정 감성을 추출한다.

Social media, such as Social Network Service include a lot of spontaneous opinions from customers, so recent companies collect and analyze information about customer feedback by using the system that analyzes Big Data on social media in order to efficiently operate businesses. However, it is difficult to analyze data collected from online sites accurately with existing morpheme analyzer because those data have spacing errors and spelling errors. In addition, many online sentences are short and do not include enough meanings which will be selected, so established meaning selection methods, such as mutual information, chi-square statistic are not able to practice Emotional Classification. In order to solve such problems, this paper suggests a module that can revise the meanings by using initial consonants/vowels and phase pattern dictionary and meaning selection method that uses priority of word class in a sentence. On the basis of word class extracted by morpheme analyzer, these new mechanisms would separate and analyze predicate and substantive, establish properties Database which is subordinate to relevant word class, and extract positive/negative emotions by using accumulated properties Database.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 감성분석 모듈 구성 방법
Ⅳ. 결론 및 향후과제
REFERENCES

리뷰(0)

도움이 되었어요.0

도움이 안되었어요.0

첫 리뷰를 남겨주세요.
Insert title here