본문 바로가기
[학술저널]

  • 학술저널

방한별(성균관대학교),  이혜우(성균관대학교) 이지형(성균관대학교)

표지

북마크 0

리뷰 0

이용수 228

피인용수 0

초록

오늘날 수많은 TV 프로그램들이 방송됨에 따라 TV 프로그램을 추천해주는 추천 시스템에 관한 연구가 시작되었으며, 추천의 정확도를 더욱 높이기 위한 연구가 현재도 활발히 진행 중이다. 추천 시스템은 장르, 줄거리 등과 같은 메타데이터를 사용하여 TV 프로그램을 추천하거나, TV 프로그램에 대한 시청자의 선호도를 계산하여 TV프로그램을 추천한다. 본 논문에서는 추천의 정확도를 높이고자 시청비율, 종료시간과의 관계, 최근시청이력 등 시청시간의 여러 패턴을 추가로 사용하여 선호도 계산에 활용하는 협업 필터링 TV 프로그램 추천 시스템을 제안한다. 연구의 효용성을 검증하기 위해 시청시간패턴의 모든 요소를 선호도 계산에 활용한 경우와 단순히 시청자가 가장 많이 시청하는 채널을 추천하는 경우의 협업 필터링 추천 결과를 비교하였다. 실험을 통해 시청시간패턴 모든 요소를 같이 선호도 계산에 활용한 경우의 성능이 증가한 것을 확인할 수 있었다.

As a number of TV programs broadcast today, researches about TV program recommender system have been studied and many researchers have been studying recommender system to produce recommendation with high accuracy. Recommender system recommends TV program to user by using metadata like genre, plot or calculating users’ preferences about TV programs. In this paper, we propose a new TV program Collaborative Filtering Recommender System that exploits viewing time pattern like viewing ratio, relation with finish time and recently viewing history to calculate preference for high-quality of recommendation. To verify usefulness of our research, we also compare our method which utilizes viewing time patterns and baseline which simply recommends TV program of user’s most frequently watched channel. Through this experiments, we show that our method very effectively works and recommendation performance increases.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 배경 지식
4. 제안 방법
5. 실험
6. 결론 및 향후 연구
References

참고문헌(0)

리뷰(0)

도움이 되었어요.0

도움이 안되었어요.0

첫 리뷰를 남겨주세요.
Insert title here