본문 바로가기
[학술저널]

  • 학술저널
  • Top 10%

장필식(세한대학교)

이 논문을 2019-08-24 에 이용했습니다.

표지

북마크 2

리뷰 0

이용수 565

피인용수 0

초록

본 논문에서는 대용량의 문서, 인터넷 댓글, 소셜 데이터, 메시지 텍스트 등으로부터 표준, 일상적 언어, 및 은어(隱語), 비속어, 약어, 이모티콘 등을 감성 분석함으로써, 복합적인 감성 중 근간이 되는 주 감성들을 측정하고 평가하는 방법을 제안한다. 제안된 방법론은 IRLBA(Implicitly Restarted Lanczos Bidiagonalization Algorithm)을 활용하여 규모가 큰 희소행렬에 대한 주성분분석을 실시하며, 데이터 취합, 메시지 분석, 감성 평가, 감성 분석 및 통합 그리고 결과물 시각화 모듈로 구성된다. 본 연구를 통해 제안된 방법론은 소셜 데이터의 감성분석의 정확도를 향상시키고 감성분석의 활용범위를 확장시키는데 있어 도움을 줄 수 있을 것으로 기대된다.

In this paper, we propose a method for identifying hidden principal sentiments among large scale texts from documents, social data, internet and blogs by analyzing standard language, slangs, argots, abbreviations and emoticons in those words. The IRLBA(Implicitly Restarted Lanczos Bidiagonalization Algorithm) is used for principal component analysis with large scale sparse matrix. The proposed system consists of data acquisition, message analysis, sentiment evaluation, sentiment analysis and integration and result visualization modules. The suggested approaches would help to improve the accuracy and expand the application scope of sentiment analysis in social data.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. 제안 시스템
Ⅳ. 결론
참고문헌

참고문헌(0)

리뷰(0)

도움이 되었어요.0

도움이 안되었어요.0

첫 리뷰를 남겨주세요.
Insert title here