본문 바로가기
[학술저널]

  • 학술저널

기상청 사례를 중심으로

김인겸(국립기상과학원) 김혜민(국립기상과학원) 임병환(국립기상과학원) 이기광(단국대학교)

이 논문을 2019-10-29 에 이용했습니다.

표지

북마크 0

리뷰 0

이용수 323

피인용수 0

초록

기상청에서 현재 시행되고 있는 만족도 설문조사의 한계를 보완하기 위해 SNS를 통한 감성분석이 활용될 수 있다. 감성분석은 2011∼2014년 동안 ‘기상청’을 언급한 트위터를 수집하여 나이브 베이즈 방법으로 긍정, 부정, 중립 감성을 분류하였다. 기본적인 나이브 베이즈 방법에 긍정, 부정, 중립의 각 감성에서만 출현한 형태소들로 추가사전을 만들어 감성분석의 정확도를 향상시키는 방법을 제안하였다. 분석결과 기본적인 나이브 베이즈 방법으로 감성을 분류할 경우 약 75%의 정확도로 학습데이터를 재현한데 반해 추가 사전을 적용할 경우 약 97%의 정확성을 보였다. 추가사전을 활용하여 검증자료의 감성을 분류한 결과 약 75%의 분류 정확도를 보였다. 낮은 분류 정확도는 향후 기상 관련의 다양한 키워드를 포함시켜 학습데이터 양을 늘려 감성사전의 질을 높임과 동시에 상시적인 사전의 업데이트를 통해 개선될 수 있을 것이다. 한편, 개별 어휘의 사전적 의미에 기반한 감성분석과 달리 문장의 의미에 기반하여 감성을 분류할 경우 부정적 감성 비율의 증가와 만족도 변화 추이를 설명할 수 있을 것으로 보여 향후 설문조사를 보완할 수 있는 좋은 수단으로 SNS를 통한 감성분석이 활용될 수 있을 것으로 사료된다.

To compensate for limited the satisfaction survey currently conducted by Korea Metrological Administration (KMA), a sentiment analysis via a social networking service (SNS) can be utilized. From 2011 to 2014, with the sentiment analysis, Twitter who had commented ‘KMA’ had collected, then, using Naïve Bayes classification, we were classified into three sentiments: positive, negative, and neutral sentiments. An additional dictionary was made with morphemes appeared only in the positive, negative, and neutral sentiments of basic Naïve Bayes classification, thus the accuracy of sentiment analysis was improved. As a result, when sentiments were classified with a basic Naïve Bayes classification, the training data were reproduced about 75% accuracy rate. Whereas, when classifying with the additional dictionary, it showed 97% accuracy rate. When using the additional dictionary, sentiments of verification data was classified with about 75% accuracy rate. Lower classification accuracy rate would be improved by not only a qualified dictionary that has increased amount of training data, including diverse keywords related to weather, but continuous update of the dictionary. Meanwhile, contrary to the sentiment analysis based on dictionary definition of individual vocabulary, if sentiments are classified into meaning of sentence, increased rate of negative sentiment and change in satisfaction could be explained. Therefore, the sentiment analysis via SNS would be considered as useful tool for complementing surveys in the future.

목차

요약
Abstract
I. 서론
II. 선행연구
III. 연구자료
IV. 감성분석
V. 결과 및 고찰
VI. 결론
참고문헌

참고문헌(0)

리뷰(0)

도움이 되었어요.0

도움이 안되었어요.0

첫 리뷰를 남겨주세요.
Insert title here