본문 바로가기
[학술저널]

  • 학술저널

홍기주(University of Seoul) 김한준(University of Seoul) 장재영(Hansung University) 전종훈(Myonji University)

표지

북마크 1

리뷰 0

이용수 71

피인용수 0

초록

시멘틱 검색은 검색 사용자의 인지적 노력을 최소화하면서 사용자 질의의 문맥을 이해하여 의미에 맞는 문서를 정확히 찾아주는 기술이다. 아직 시멘틱 검색 기술은 온톨로지 또는 시멘틱 메타데이터 구축의 난제를 갖고 있으며 상용화 사례도 매우 미흡한 실정이다. 본 논문은 기존 시멘틱 검색 엔진의 한계를 극복하기 위하여 이전 연구에서 고안한 위키피디아 기반의 시멘틱 텐서공간모델을 활용하여 새로운 시멘틱 검색 기법을 제안한다. 제안하는 시멘틱 기법은 문서집합에 출현하는 ‘단어’가 텐서공간모델에서 ‘문서-개념’의 2차 텐서(행렬), ‘개념’은 ‘문서-단어’의 2차 텐서로 표현된다는 성질을 이용하여 시멘틱 검색을 위해 요구되는 온톨로지 구축의 필요성을 없앤다. 그럼에도 불구하고, OHSUMED, SCOPUS 데이터셋을 이용한 성능평가를 통해 제안 기법이 벡터공간모델에서의 기존 검색 기법보다 우수함을 보인다.

Semantic search is known as a series of activities and techniques to improve the search accuracy by clearly understanding users’ search intent without big cognitive efforts. Usually, semantic search engines requires ontology and semantic metadata to analyze user queries. However, building a particular ontology and semantic metadata intended for large amounts of data is a very time-consuming and costly task. This is why commercialization practices of semantic search are insufficient. In order to resolve this problem, we propose a novel semantic search method which takes advantage of our previous semantic tensor space model. Since each term is represented as the 2nd-order ‘document-by-concept’ tensor (i.e., matrix), and each concept as the 2nd-order ‘document-by-term’ tensor in the model, our proposed semantic search method does not require to build ontology. Nevertheless, through extensive experiments using the OHSUMED document collection and SCOPUS journal abstract data, we show that our proposed method outperforms the vector space model-based search method.

목차

초록
ABSTRACT
1. 서론
2. 관련 연구
3. 시멘틱 검색
4. 실험 및 평가
5. 결론 및 향후 연구 방안
References

참고문헌(0)

리뷰(0)

도움이 되었어요.0

도움이 안되었어요.0

첫 리뷰를 남겨주세요.
Insert title here