본문 바로가기
[학술저널]

  • 학술저널

권영대(성균관대학교) 김누리(성균관대학교) 이지형(성균관대학교)

표지

북마크 0

리뷰 0

이용수 163

피인용수 0

초록

문서의 요약은 요약문 내의 문장들끼리 서로 연관성 있게 이어져야 하고 하나의 짜임새 있는 글이 되어야 한다. 본 논문에서는 위의 목적을 달성하기 위해 문장 간의 유사도와 수반 관계(Entailment)를 고려하여 문서 내에서 연관성이 크고 의미, 개념적인 연결성이 높은 문장들을 추출할 수 있도록 하였다. 본 논문에서는 Recurrent Neural Network 기반의 문장 관계 추론 모델과 그래프 기반의 랭킹(Graphbased ranking) 알고리즘을 혼합하여 단일 문서 추출요약 작업에 적용한 새로운 알고리즘인 TextRank-NLI를 제안한다. 새로운 알고리즘의 성능을 평가하기 위해 기존의 문서요약 알고리즘인 TextRank와 동일한 데이터 셋을 사용하여 성능을 비교 분석하였으며 기존의 알고리즘보다 약 2.3% 더 나은 성능을 보이는 것을 확인하였다.

Document summarization aims to generate a summary that is consistent and contains the highly related sentences in a document. In this study, we implemented for document summarization that extracts highly related sentences from a whole document by considering both similarities and entailment relations between sentences. Accordingly, we proposed a new algorithm, TextRank-NLI, which combines a Recurrent Neural Network based Natural Language Inference model and a Graphbased ranking algorithm used in single document extraction-based summarization task. In order to evaluate the performance of the new algorithm, we conducted experiments using the same datasets as used in TextRank algorithm. The results indicated that TextRank-NLI showed 2.3% improvement in performance, as compared to TextRank.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. TextRank-NLI
4. 실험
5. 결론
References

리뷰(0)

도움이 되었어요.0

도움이 안되었어요.0

첫 리뷰를 남겨주세요.
Insert title here