본문 바로가기
[학술저널]

  • 학술저널
  • Top 10%

유홍연(동아대학교) 고영중(동아대학교)

표지

북마크 0

리뷰 0

이용수 566

피인용수 0

초록

개체명 인식이란 문서 내에서 인명, 기관명, 지명, 시간, 날짜 등 고유한 의미를 가지는 개체명을 추출하여 그 종류를 결정하는 것을 말한다. 최근 개체명 인식 연구에서 가장 우수한 성능을 보여주고 있는 모델은 Bidirectional LSTM CRFs 모델이다. 이러한 LSTM 기반의 딥 러닝 모델은 입력이 되는 단어 표상에 의존적이다. 따라서 입력이 되는 단어를 잘 표현하기 위하여 단어 표상을 확장하는 방법에 대한 연구가 많이 진행되어지고 있다. 본 논문에서는 한국어 개체명 인식을 위하여 Bidirectional LSTM CRFs모델을 사용하고, 그 입력으로 사용되는 단어 표상을 확장하기 위해 사전 학습된 단어 임베딩 벡터, 품사 임베딩 벡터, 음절 기반에서 확장된 단어 임베딩 벡터, 그리고 개체명 사전 자질 벡터를 사용한다. 최종 단어 표상 확장 결과 사전 학습된 단어 임베딩 벡터만 사용한 것 보다 8.05%p의 성능 향상을 보였다.

Named entity recognition (NER) seeks to locate and classify named entities in text into pre-defined categories such as names of persons, organizations, locations, expressions of times, etc. Recently, many state-of-the-art NER systems have been implemented with bidirectional LSTM CRFs. Deep learning models based on long short-term memory (LSTM) generally depend on word representations as input. In this paper, we propose an approach to expand word representation by using pre-trained word embedding, part of speech (POS) tag embedding, syllable embedding and named entity dictionary feature vectors. Our experiments show that the proposed approach creates useful word representations as an input of bidirectional LSTM CRFs. Our final presentation shows its efficacy to be 8.05%p higher than baseline NERs with only the pre-trained word embedding vector.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 제안 방법
4. 실험
5. 결론
References

리뷰(0)

도움이 되었어요.0

도움이 안되었어요.0

첫 리뷰를 남겨주세요.
Insert title here