본문 바로가기
[학술저널]

지능형 영상 감시 시스템에서 모바일 센서 융합을 이용한 폭력행위 인식

  • 학술저널

지능형 영상 감시 시스템에서 모바일 센서 융합을 이용한 폭력행위 인식

A Recognition of Violence Using Mobile Sensor Fusion in Intelligent Video Surveillance Systems

차현인(인하대학교) 송광호(인하대학교) 김유성(인하대학교)

DOI : 10.5626/JOK.2018.45.6.533

표지

북마크 0

리뷰 0

이용수 69

피인용수 0

초록

본 논문에서는 지능형 CCTV에서 동시다발적이고 연속적인 행위들로부터 추출한 특성들을 반영하여 폭력행위를 인식하는 방법으로서 그룹 ROI(Region of Interest)를 검출하고 ROI에서의 Dense Optical Flow 알고리즘을 사용해 얻은 움직임 정보와 영상 내 행위자가 소지한 모바일 기기의 관성측정장치로부터 얻은 가속도와 각속도 정보를 융합한 폭력행위 인식모델을 제안한다. 그리고 제안한 모델의 연산시간 감소를 통한 실시간성 확보와 영상만을 사용했을 때의 가려짐에 따른 성능 저하 현상의 성능 개선여부를 평가하기 위한 실험들을 진행하였으며 실행시간 측면에서 약 5.26배 빠른 연산속도를 보였고 정확도 측면에서 11.4% 증진된 결과를 보였다. 이를 통해 제안 모델이 폭력행위 인식에 발생하는 과도한 연산에 따른 실시간성 문제를 보완할 수 있고 영상 내 행위자 사이의 가려짐에 따른 비전 인식 불능에 대한 문제점을 보완할 수 있음을 알 수 있다.

In this paper, we propose a violence recognition model by reflecting features extracted by concurrent and continuous action in intelligent CCTV through detecting group ROI(Region of Interest) from image. And then, proposed model uses extracted motion information obtained by using Dense Optical Flow algorithm in ROI and fusing of the acceleration and angular velocity information obtained from the inertial measurement unit of the mobile device possessed by actor. Experiments were performed to evaluate the reduction of the computation time of the proposed model and improvement of the performance degradation due to the occlusion. Result of experiment, the execution time was about 51 times faster and the accuracy of recognition of violence was improved by 11% compared to previous research methods. Therefore, the proposed model can overcome the problem of real-time failure due to excessive computation and can solve the problem of invisibility due to occlusion by actor in the image in recognition of violence.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 센서 융합을 통한 폭력행위 인식 모델
4. 실험 및 평가
5. 결론
References

리뷰(0)

도움이 되었어요.0

도움이 안되었어요.0

첫 리뷰를 남겨주세요.
Insert title here