본문 바로가기
[학술저널]

  • 학술저널

Jung Hwan Oh(Silla University) Fatih Karadeniz(Silla University) Jung Im Lee(Silla University) Youngwan Seo(Korea Maritime and Ocean University) Chang-Suk Kong(Silla University)

DOI : 10.3746/pnf.2019.24.3.299

표지

북마크 0

리뷰 0

이용수 2

피인용수 0

초록

Artemisia princeps, the Korean mugwort, is an edible plant that has various beneficial effects on health, and which has been used as a part of traditional folk medicine. The current study investigated the possible effects of solvent (H₂O, n-BuOH, 85% aq. MeOH, and n-hexane) partitioned fractions of A. princeps crude extract (APE) on adipogenic differentiation of 3T3-L1 mouse pre-adipocytes. Characteristics of the differentiated adipocytes were evaluated by Oil red O staining of intracellular lipid droplets, analyzing mRNA and protein levels of peroxisome proliferator-activated receptor (PPAR)γ, CCAAT/enhancer-binding protein (C/EBP)α, and sterol regulatory element-binding protein (SREBP)-1c, and immunoblotting of phosphorylated mitogen-activated protein kinase (MAPK) pathway proteins such as p38, extracellular-signal- regulated kinase (ERK), and c-Jun N-terminal kinase (JNK). Introduction of APE fractions to differentiating adipocytes resulted in lowered lipid accumulation and downregulation of the PPARγ pathway. APE fractions significantly decreased mRNA and protein expression of PPARγ, C/EBPα, and SREBP-1c. Analysis of MAPK pathway activation showed similar results since treatment with the APE fraction treatment decreased levels of phosphorylated p38, ERK, and JNK. Overall, the n-BuOH and n-hexane fractions were observed to be the most active fractions to suppress adipogenesis-related signaling in 3T3-L1 cells. The promising ability of APE fractions to inhibit adipocyte differentiation of 3T3-L1 cells suggest that A. princeps has potential to be utilized as a source of anti-obesity compounds.

목차

ABSTRACT
INTRODUCTION
MATERIALS AND METHODS
RESULTS AND DISCUSSION
REFERENCES

참고문헌(0)

리뷰(0)

도움이 되었어요.0

도움이 안되었어요.0

첫 리뷰를 남겨주세요.
Insert title here