메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
LDA는 데이타를 잘 구분하게 하는 변환을 제공하고, 얼굴 인식에서 우수한 성능를 보였다. 그러나, LDA는 전체 데이타에 대해 단 하나의 변환 행렬만을 주므로 사람 얼굴과 같은 많은 클래스로 구성되어 있는 복잡한 데이타를 구분하기에 충분하지 않다. 이런 약점을 극복하기 위해 우리는 LDA 혼합 모형이라는 새로운 얼굴 인식 방법을 제안한다. LDA 혼합 모형에서는 모든 클래스가 여러 개의 군집으로 분할되고 각 군집에 대해서 하나의 변환 행렬을 얻는다. 이렇게 더 세세히 표현하는 방법은 분류 성능을 크게 향상시킬 것이다. 얼굴 인식 실험 결과, LDA 혼합 모형은 PCA, LDA, PCA 혼합 모형보다 더 우수한 분류 성능을 보여주었다.

목차

요약

Abstract

1. Introduction

2. LDA

3. LDA Mixture Model

4. Simulation Results and Discussion

5. Conclusion

References

저자소개

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-015183496