메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지 : 소프트웨어 및 응용 정보과학회논문지 : 소프트웨어 및 응용 제32권 제5호
발행연도
2005.5
수록면
378 - 384 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 기존의 스팸 메일 필터링 시스템의 성능을 향상시키기 위한 새로운 필터링 방법을 설명한다. 대부분의 스팸 필터링 시스템은 메일의 제목이나 혹은 그 문서 안에서 발견되는 단어들의 분포를 조사하여 이루어진다. 한편, 최근의 스팸 발송자들은 메일 서비스 업체가 제공하는 웹메일 계정을 이용하여 스팸을 발송하기 시작하였다. 이렇게 웹메일을 통해 발송되는 스팸 메일의 특징을 보면, 그 메일 계정이 자동으로 생성되기 때문에 일반 사용자의 메일 계정과 많은 차이를 보인다. 본 연구에서는 이러한점에 착안하여, 발송자의 메일 계정이 자동 생성된 메일 계정인지를 예측하고 이를 통해 스팸을 필터링하고자 한다. 메일 계정을 분류하기 위해서는 패턴 인식 문제에서 사용되어 온 결정 트리를 이용하였으며, 메일 서비스 업체로부터 수집된 약 215 만개의 메일 계정에 대해 실험하였다. 실험 결과, 96.3%의 정확률을 나타내었으며, 기존 시스템과 연동하여 새로운 형태의 스팸을 필터링할 수 있었다.

목차

요약

Abstract

1. 서론

2. 관련 연구

3. CART를 이용한 메일 계정 분류

4. 결론

참고문헌

저자소개

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-015189645