메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능정보시스템학회 지능정보연구 한국지능정보시스템학회논문지 제11권 제3호
발행연도
2005.12
수록면
69 - 81 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
고객관계관리는 치열한 경쟁환경에서 각 기업이 생존하기 위해 반드시 필요한 하나의 기업전략이 되었다. 고객관계관리의 방법은 다양하지만 가장 기본적인 방법은 특정 고객이 어떤 상품 혹은 상품군을 구매할 것인지를 정확히 예측하는 것이다. 이미 국내외 실무현장에서 전통적인 데이터마이닝 기법을 활용한 고객구매예측모형이 널리 적용되고 있다. 하지만 전통적인 기법의 경우, 정확도가 상대적으로 떨어지거나 혹은 모형의 구축 및 유지관리가 어렵다는 문제가 종종 제기되어 왔다. 이에 본 연구에서는 기존 모형의 문제점을 개선하기 위한 대안으로, 매우 높은 예측력을 나타내면서 동시에 일반화 능력이 우수한 것으로 알려진 Support Vector Machine(SVM)을 이용하여 고객구매예측모형을 구축하고자 한다. 본 연구에서는 고객구매예측의 도구로써 SVM의 적합성을 판단하기 위하여 전통적인 기법인 로지스틱 회귀분석, 인공신경망과 그 성과를 비교하였다. 그 결과, SVM이 다른 기법들에 비해 상대적으로 우수한 성과를 나타냄을 확인할 수 있었다.

목차

국문초록

1. 서론

2. 선행연구

3. 실증연구 : 자료수집과 변수선정

4. 실증연구 결과

5. 결론

참고문헌

Abstract

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-003-015411752