메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한기계학회 대한기계학회 논문집 A권 대한기계학회논문집 A권 제31권 제1호
발행연도
2007.1
수록면
89 - 96 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
A volume integral equation method (VIEM) is applied for the effective analysis of plane elastostatic problems in unbounded solids containing single isotropic inclusion of two different shapes considering composite fiber volume fraction. Single cylindrical inclusion and single square cylindrical inclusion are considered in the composites with six different fiber volume fractions (0.25, 0.30, 0.35, 0.40, 0.45, 0.50). Using the rule of mixtures, the effective material properties are calculated according to the corresponding composite fiber volume fraction. The analysis of plane elastostatic problems in the unbounded effective material containing single fiber that covers an area corresponding to the composite fiber volume fraction in the bounded matrix material are carried out. Thus, single fiber, matrix material with a finite region, and the unbounded effective material are used in the VIEM models for the plane elastostatic analysis. A detailed analysis of stress field at the interface between the matrix and the inclusion is carried out for single cylindrical or square cylindrical inclusion. Next, the stress field is compared to that at the interface between the matrix and the single inclusion in unbounded isotropic matrix with single isotropic cylindrical or square cylindrical inclusion. This new method can also be applied to general two-dimensional elastodynamic and elastostatic problems with arbitrary shapes and number of inclusions. Through the analysis of plane elastostatic problems, it will be established that this new method is very accurate and effective for solving plane elastic problems in unbounded solids containing inclusions considering composite fiber volume fraction.

목차

Abstract
1. 서론
2. 체적 적분방정식법(VIEM)
3. 함유체의 두 가지 모델링 방법
4. 결론
후기
참고문헌

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-550-017645950