메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한전자공학회 JUCT : Journal of Ubiquitous Convergence Technology Journal of Ubiquitous Convergence Technology Vol.1 No.1
발행연도
2007.11
수록면
18 - 22 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Multi-Instance Learning(MIL) performs well to deal with inherently ambiguity of images in multimedia retrieval. In this paper, an effective framework for Contented-Based Image Retrieval(CBIR) with MIL techniques is proposed, the effective mechanism is based on the image segmentation employing improved Mean Shift algorithm, and processes the segmentation results utilizing mathematical morphology, where the goal is to detect the semantic concepts contained in the query. Every sub-image detected is represented as a multiple features vector which is regarded as an instance. Each image is produced to a bag comprised of a flexible number of instances. And we apply a few number of MIL algorithms in this framework to perform the retrieval. Extensive experimental results illustrate the excellent performance in comparison with the existing methods of CBIR with MIL.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. SUPERBAG TECHNIQUES
Ⅲ. EXPERIMENTS
Ⅳ. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-016156042