메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제11권 제9호
발행연도
2001.12
수록면
777 - 781 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
본 논문은 저대비 영상을 처리하여 보다 향상된 영상을 얻고자 퍼지 함수와 개선된 IAFC 모델을 적용한 영상 대비 향상 기법을 제안한다. 저대비에 의한 영상 정보의 불확실성이 무작위성보다 명암도의 모호성과 퍼지성에 근거한다는 점에서 퍼지 집합이론을 영상 향상 기법을 개발하는데 적용한다. 영상 향상의 단계를 퍼지화, 대비 강화 연산, 비퍼지화 단계로 나눠볼 수 있으며, 퍼지화 및 비퍼지화 과정에서 적절한 교차점 선택이 요구되고 이때 개선된 IAFC 모델을 적용하여 최적의 교차점을 선택한다. 데이터 대한 정보없이 임계 파라미터를 조정함으로써 클러스터링을 할 수 있는 개선된 IAFC 모델로 두 클래스만을 형성하도록 하여 명암도의 애매성이 최대가 되는 교차점을 찾아 대비를 강화시킨다. 대비 향상의 정량적 측정을 위해 퍼지성 지수를 사용하며 히스토그램 균등화 기법을 사용한 대비 향상 결과와 비교한다. 저대비 영상에 대해 최적의 교차점의 위치를 정하는 제안한 기법의 결과가 많은 실험영상을 통해 우수함을 보여주고 있다.

목차

요약
Abstract
1. 서론
2. 퍼지 영상 향상 기법
3. 영상 실험 및 결과
4. 결론
참고문헌
저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014804569