메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
최현석 (건국대학교) 이종형 (건국대학교) 김민욱 (건국대학교) 김지나 (건국대학교) 조현태 (건국대학교) 이한덕 (건국대학교) 윤경로 (건국대학교)
저널정보
한국방송·미디어공학회 한국방송미디어공학회 학술발표대회 논문집 2010년도 한국방송공학회 하계 학술대회
발행연도
2010.7
수록면
142 - 145 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 사용자의 12가지 감성 정보와 음악의 8가지 무드 카테고리를 기반으로 음악을 추천해주는 시스템을 구현하였다. 사용자의 감성과 음악의 무드를 기반으로 음악을 검색하기 위해 전공자 집단 5명과 비전공자 집단 13명, 총 18명으로부터 감성 히스토리 정보와 무드 분류 정보를 얻었다. 감성 히스토리 정보는 참여자가 자신의 감성 정보를 지정하고 어떤 음악을 들었는지를 나타내며, 무드 분류 정보는 각 곡이 어떤 무드를 갖는지를 나타낸다. 위에서 얻어진 정보를 바탕으로 사용자의 감성 정보를 기반으로 3가지 각기 다른 추천 알고리즘을 구현했다. 첫 번째 알고리즘은 사용자 감성 정보를 기반으로 얻어진 유사도 곡 리스트 중 1위곡의 무드 정보를 이용하여 음악을 추천한다. 두 번째 알고리즘은 첫 번째 알고리즘에서 1위곡부터 20위곡까지의 무드 정보를 이용하여 음악을 추천한다. 마지막 추천 알고리즘은 사용자 감성 정보를 기반으로 얻어진 유사도곡 리스트를 등록된 사용자들이 가장 많이 들었던 순서대로 정렬하여 음악을 추천한다.

목차

요약
1. 서론
2. 사용자 감성 기반 음악 추천 시스템 구조
3. 사용자 감성과 음원 무드 분류
4. 사용자의 감성 정보와 음원의 무드 정보 수집
5. 3가지 추천 알고리즘
6. UI
7. 결론 및 향후 과제
사사
참고 문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-568-004140210