메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
이혁주 (건국대학교) 김명진 (건국대학교) 이한구 (건국대학교) 윤효근 (건국대학교)
저널정보
Korean Institute of Information Scientists and Engineers 한국정보과학회 학술발표논문집 한국정보과학회 2011한국컴퓨터종합학술대회 논문집 제38권 제1호(B)
발행연도
2011.6
수록면
357 - 360 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 인터넷과 통신기술, 특히 모바일과 관련된 기술의 급속한 발전으로 소셜 커뮤니케이션 수단으로 대표되는 SNS(Social Networking Service)가 중요한 이슈로 부각되어지고 있다. SNS 서비스 제공시 중요하게 고려되어져야 할 사항은 정확하고 의미 있는 데이터를 통해서 사용자가 원하고 관심 있는 분야의 정보를 어떻게 제공할 것인가에 초점이 맞춰져 있어야 한다. 그러나 최근 폭발적으로 증가되어지고 있는 소셜 데이터 때문에 사용자는 의미 분석이 정확하게 이루어지지 않은 신뢰성이 결여된 소셜 커뮤니케이션 서비스를 제공받고 있다. 이러한 소셜데이터 분석의 문제점을 해결하기 위해서 본 논문에서는 소셜 네트워크 서비스에 필요한 데이터를 수집하고, 클라우드 컴퓨팅 환경에서 수집된 대용량 SNS 데이터의 의미를 분석 할 수 있는 MapReduce 기반의 분석 모듈의 구조를 제안하였다. 제안한 모듈은 의미 분석에 필요한 소셜 데이터를 수집하는 수집 기능과 수집된 소셜데이터의 의미 분석을 수행하는 분석 기능을 포함하고 있다. 수집 기능은 SNS에서 생성되는 텍스트 형태의 데이터를 수집하고 MapReduce를 통해서 데이터를 분석하기 쉽게 적절한 크기로 생성된 파일을 분할한다. 수집된 소셜 데이터의 의미 분석은 기존 TF-IDF 방식에 개선된 Weighted-MINMAX 적용한 알고리즘을 통해서 구현하였다. 개선된 알고리즘은 단어의 중요도를 평가하고, 중요도가 높은 단어로 구성된 의미정보 제공 서비스를 지원한다. 시스템의 성능 평가를 위해서 노드별 데이터 처리시간과 추출 키워드의 정확도를 측정하였다.

목차

요약
1. 서론
2. 관련 연구
3. 맵리듀스 기반의 소셜 데이터 분석 모듈
4. 구현 및 성능 평가
5. 결론 및 향후 연구
Acknowledgement
6. 참고문헌

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-569-000349721