본문 바로가기
[학술저널]

  • 학술저널

전성해(청주대학교)

표지

북마크 0

리뷰 0

이용수 146

피인용수 0

초록

통계학과 기계학습의 다양한 기법을 이용하여 문서집합을 군집화하기 위해서는 우선 군집화분석에 적합한 데이터구조로 대상 문서집합을 변환해야 한다. 문서군집화를 위한 대표적인 구조가 문서-단어행렬이다. 각 문서에서 발생한 특정단어의 빈도값을 갖는 문서-단어행렬은 상당부분의 빈도값이 0인 희소성문제를 갖는다. 이 문제는 문서군집화의 성능에 직접적인 영향을 주어 군집화결과의 성능감소를 초래한다. 본 논문에서는 문서-단어행렬의 희소성문제를 해결하기 위하여 인자분석을 통한 인자점수를 이용하였다. 즉, 문서-단어행렬을 문서-인자점수행렬로 바꾸어 문서군집화의 입력데이터로 사용하였다. 대표적인 문서군집화 알고리즘은 자기조직화지도에 적용하여 문서-단어행렬과 문서-인자점수행렬에 대한 문서군집화의 결과들을 비교하였다.

The retrieved documents have to be transformed into proper data structure for the clustering algorithms of statistics and machine learning. A popular data structure for document clustering-term matrix. This matrix has the occurred frequency value of a term in each document. There is a sparsity problem in this matrix because most frequencies of the matrix are 0 values. This problem affects the clustering performance. The sparsensess of document-term matrix decrease the performance of clustering result. So, this research uses the factor score by factor analysis to solve the sparsity problem in document clustering. The document-term matrix is transformed to document-factor score matrix using factor scores in this paper. Also, the document-factor score matrix is used as input data for document clustering. To compare the clustering performances between document-term matrix and document-factor score matrix, this research applies two matrices to self organizing map (SOM) clustering.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 인자점수와 자기조직화지도를 이용한 문서군집화
4. 실험 및 결과
5. 결론 및 향후 연구과제
참고문헌

리뷰(0)

도움이 되었어요.0

도움이 안되었어요.0

첫 리뷰를 남겨주세요.
DBpia에서 서비스 중인 논문에 한하여 피인용 수가 반영됩니다.
인용된 논문이 DBpia에서 서비스 중이라면, 아래 [참고문헌 신청]을 통해서 등록해보세요.
Insert title here