본문 바로가기
[학술저널]

  • 학술저널

강필성(서울과학기술대학교)

UCI(KEPA) : I410-ECN-0101-2014-530-000855625

표지

북마크 0

리뷰 0

이용수 132

피인용수 0

초록

Classification algorithms generally assume that the data is complete. However, missing values are common in real data sets due to various reasons. In this paper, we propose to use locally linear reconstruction (LLR) for missing value imputation to improve the classification performance when missing values exist. We first investigate how much missing values degenerate the classification performance with regard to various missing ratios. Then, we compare the proposed missing value imputation (LLR) with three well-known single imputation methods over three different classifiers using eight data sets. The experimental results showed that (1) any imputation methods, although some of them are very simple, helped to improve the classification accuracy; (2) among the imputation methods, the proposed LLR imputation was the most effective over all missing ratios, and (3) when the missing ratio is relatively high, LLR was outstanding and its classification accuracy was as high as the classification accuracy derived from the compete data set.

목차

1. 서론
2. 지역적 선형 재구축을 통한 결측치 대치
3. 실험 설계
4. 실험 결과 및 토의
5. 결론 및 향후 계획
참고문헌

리뷰(0)

도움이 되었어요.0

도움이 안되었어요.0

첫 리뷰를 남겨주세요.
DBpia에서 서비스 중인 논문에 한하여 피인용 수가 반영됩니다.
인용된 논문이 DBpia에서 서비스 중이라면, 아래 [참고문헌 신청]을 통해서 등록해보세요.
Insert title here