메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
손수덕 (한국기술교육대학교) 하준홍 (한국기술교육대학교) 이승재 (한국기술교육대학교)
저널정보
대한건축학회 대한건축학회 논문집 - 구조계 大韓建築學會論文集 構造系 第28 第11號
발행연도
2012.11
수록면
39 - 46 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study aims at obtaining an analytical solution of nonlinear dynamic system by using multi-interval Taylor series method, and adopting a arch model to its application. For this purpose, the nonlinear governing equations of the arch are formulated and the examples of symmetric and asymmetric modes are dealt with to obtain the analytical solution within each interval. The results of dynamic analysis using this method is also conducted to evaluate the computed solution for the behavior of the arches subjected to step excitations. As the results, the polynomial series solutions with respect to time are able to be obtained from this method. In this paper, the dynamic snapping of the shallow arches is observed very well from the result of the symmetric mode example, and a change of attractor in phase space is investigated as well. A significant growth of displacement response and the appearance of strange attractor are also manifested in the asymmetric mode model under step excitation. These results from the response and the attractor investigation through Taylor method application reveal that the method is valid in explaining the sensitive behavior of shallow arches. In conclusion, The multi-interval Taylor series method as the result of this work can be applied to deal with the nonlinear differential equations for the sensitive dynamic system like arch structures and the reliability of the analysis results is able to expected.

목차

Abstract
1. 서론
2. 다분할 테일러급수 해법
3. 아치의 비선형 지배방정식과 해석적 해
4. 결론
참고문헌

참고문헌 (3)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-540-000823232