메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
정철우 (한국국방연구원) 민재형 (서강대학교)
저널정보
한국경영과학회 한국경영과학회지 韓國經營科學會誌 第38卷 第1號
발행연도
2013.3
수록면
139 - 152 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The purpose of this study is to claim the validity of tuning the architecture of neural network models for multi-class classification. A neural network model for multi-class classification is basically constructed by building a series of neural network models for binary classification. Building a neural network model, we are required to set the values of parameters such as number of hidden nodes and weight decay parameter in advance, which draws special attention as the performance of the model can be cute different by the values of the parameters. For better performance of the model, it is absolutely necessary to have a prior process of tuning the parameters every time the neural network model is built. Nonetheless, previous studies have not mentioned the necessity of the tuning process or proved its validity. In this study, we claim that we should tune the parameters every time we build the neural network model for multi-class classification. Through empirical analysis using wine data, we show that the performance of the model with the tuned parameters is superior to those of untuned models.

목차

Abstract
1. 서론
2. 이론적 배경
3. 실험 디자인
4. 실증 분석
5. 결론
참고문헌

참고문헌 (20)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-320-003164834