본문 바로가기
  • 학술저널

표지

DBpia에서 서비스 중인 논문에 한하여 피인용 수가 반영됩니다. 내서재에 논문을 담은 이용자 수의 총합입니다.

초록·키워드 목차

트위터는 페이스북과 더불어 전 세계적으로 인기 있는 SNS(Social Network Service)이다. 트위터에서 이메일 인증 방식을 악용하여 대량 생성된 스패머 계정은 유해한 콘텐츠로 트위터 사용자들에게 불편함을 준다. 본 논문에서는 이러한 문제를 해결하고자 관계 기반 특징을 이용한 스패머 탐지 기법을 제안한다. 관계 기반 특징이란 사용자의 호감 정도를 표현할 수 있는 친구 관계 특징과 사용자 간의 유사성을 나타낼 수 있는 유형 관계 특징들을 의미한다. 기존의 스패머 탐지 기법과 본 논문에서 제안하는 탐지 기법의 성능을 스패머의 비율을 3%에서 30%까지 변화시키면서 비교 실험한 결과, 본 논문에서 제안하는 기법이 Naive Bayesian Classifier와 Decision Tree 모두에서 더 우수한 성능을 보였다. #스패머 #트위터 #소셜 네트워크 서비스 #나이브 베이지안 #결정 트리 #spammer #twitter #social network service #naive bayesian #decision tree

요약
Abstract
1. 서론
2. 관련연구
3. 친구 관계 기반 스패머 탐지
4. 사용자 유형 관계 기반 스패머 탐지
5. 실험 및 결과
5. 결론 및 향후 연구
References

저자의 논문

DBpia에서 서비스 중인 논문에 한하여 피인용 수가 반영됩니다.
Insert title here
논문의 정보가 복사되었습니다.
붙여넣기 하세요.