메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
언어과학회 언어과학연구 언어과학연구 제30집
발행연도
2004.9
수록면
89 - 114 (26page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The aim of this paper is to propose the morphological analysis system using the affix information. Based on rule-based methodology, the morphological analysis system is constructed. Many of the analysis errors are caused by unregistered words. If target words(`euseul`) is composed of unregistered words, too many ending analyses are easy to make an error. Especially, the words with the affix which is one syllable word is difficult to analyze correctly. Such errors are able to be corrected by using affix information. The affix property information and affix combination rule prevent the morphological analysis system from making erroneous results. The affix combination rule is a kind of the feature checking rule. If the ending has [v] and the stem has [v], the analysis is correct, and vice versa. But some words do not follow the rules. As the situation is very limited, we can make simple filtering rules. The Affix property information is related to the combined place. Some affixes are always combined with adjacent place to the stem. Some affixes have some restriction to the combination to the adjacent place. And some affixes are placed in the rightmost place of the word. By these property, we can assign the special feature to the affixes. These features can be used to analyze the words and the success rate of the morphological analysis will pick up considerably. The affix rules which are made in this paper are very compact, the application to the real system is not difficult. Especially, as these rules are composed of the independent modules, the expansion and amendment of the rules are easy, which is the merit of this system.

목차

등록된 정보가 없습니다.

참고문헌 (20)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-700-002557939