메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Myeongkyu Kim (Soongsil University) Donghun Lee (Soongsil University)
저널정보
대한인간공학회 대한인간공학회지 대한인간공학회지 제35권 제5호
발행연도
2016.10
수록면
319 - 341 (23page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Objective:This research analyzed the lower-limb motion in kinetic and kinematic way while walking on various terrains to develop Foot-Ground Contact Detection (FGCD) algorithm using the Inertial Measurement Unit (IMU).
Background: To estimate the location of human in GPS-denied environments, it is well known that the lower-limb kinematics based on IMU sensors, and pressure insoles are very useful. IMU is mainly used to solve the lower-limb kinematics, and pressure insole are mainly used to detect the foot-ground contacts in stance phase. However, the use of multiple sensors are not desirable in most cases. Therefore, only IMU based FGCD can be an efficient method.
Method: Orientation and acceleration of lower-limb of 10 participants were measured using IMU while walking on flat ground, ascending and descending slope and stairs. And the inertial information showing significant changes at the Heel strike (HS), Full contact (FC), Heel off (HO) and Toe off (TO) was analyzed.
Results: The results confirm that pitch angle, rate of pitch angle of foot and shank, and acceleration in x, z directions of the foot are useful in detecting the four different contacts in five different walking terrain.
Conclusion: IMU based FGCD Algorithm considering all walking terrain possible in daily life was successfully developed based on all IMU output signals showing significant changes at the four steps of stance phase.
Application: The information of the contact between foot and ground can be used for solving lower-limb kinematics to estimating an individual"s location and walking speed.

목차

1. Introduction
2. Method
3. The Experimental Results
4. Discussion
5. Conclusion

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-530-001948565