메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
FaZheng Chu (Agricultural University) Sung-Hwan Jung (Changwon National University)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제20권 제9호
발행연도
2017.9
수록면
1,567 - 1,573 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The k-nearest neighbor (k-NN) algorithm is one of the most widely used benchmark algorithm in classification. Nowadays it has been further applied to predict time series. However, one of the main concerns of the algorithm applied on short-term electricity load forecasting is high computational burden. In the paper, we propose an approach of dimension reduction that follows the principles of highlighting the temperature effect on electricity load data series. The results show the proposed approach is able to reduce the dimension of the data around 30%. Moreover, with temperature effect highlighting, the approach will contribute to finding similar days accurately, and then raise forecasting accuracy slightly.

목차

ABSTRACT
1. INTRODUCTION
2. DECISIVE FACTORS ON SHORT-TERM LOAD
3. METHODOLOGY
4. SUMMARY AND CONCLUSION
REFERENCE

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0