메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국데이터정보과학회 한국데이터정보과학회지 한국데이터정보과학회지 제25권 제6호
발행연도
2014.12
수록면
1,345 - 1,352 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
데이터마이닝 기법 중에서 연관성 규칙은 연관성 평가 기준을 기반으로 하여 데이터베이스에 포함되어 있는 항목들 간의 관련성을 탐색하는 기법이다. 일반적인 연관성 규칙 기법과는 달리 역의 연관성 규칙은 하나의 항목집합이 발생하지 않으면 다른 항목집합도 발생하지 않는다는 규칙을 찾아내는 것이다. 이러한 역의 연관성 규칙을 일반적인 연관성 규칙과 함께 생성하면 기업체에서 특정 제품을 판매하기 위해서는 그 제품만의 마케팅뿐만 아니라 더 나아가 어떤 제품의 마케팅이 필요한 지에 대한 정보를 파악할 수 있다. 이를 위해 본 논문에서는 이러한 두 종류의 연관성 규칙에 적용 가능한 균형화된 기여 상대적 규칙 정확도를 연관성 평가 기준으로 제안하고자 한다. 또한 Piatetsky-Shapiro(1991)가 제안한 흥미도 측도가 가져야 할 조건들을 점검한 후, 예제를 통하여 제안된 측도와 연관성 규칙에 적용 가능한 의학진단분야의 평가 측도들의 유용성을 비교하였다. 그 결과, 기여 상대적 정확도와 역의 기여 상대적 정확도의 크기가 다르게 나타나면 연관성의 정도를 명확하게 설명하기가 어려우므로 이들 두 측도를 동시에 고려한 균형화된 기여 상대적 규칙 정확도를 이용하는 것이 가장 바람직하다는 사실을 확인하였다.

목차

등록된 정보가 없습니다.

참고문헌 (15)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-041-001375666