메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
윤준서 (핑거포인트) 안현태 (경기대학교) 최예림 (경기대학교)
저널정보
한국전자거래학회 한국전자거래학회지 한국전자거래학회지 제23권 제2호
발행연도
2018.5
수록면
97 - 110 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
4차 산업혁명 시대를 맞아, 제조 기업들은 생산성 향상을 위해 축적된 설비 데이터를 활용하여 스마트제조를 실현하는 것에 높은 관심을 두고 있다. 하지만 기존의 설비 데이터 분석연구들은 주로 센서 데이터 등 정형 데이터를 대상으로 하여, 실제 큰 비중을 차지하고 있는 텍스트와 같은 비정형 데이터에 대한 분석 연구는 부족한 실정이다. 특히, 작업자가 수기로 작성한 텍스트 데이터를 활용한 사례는 매우 적었다. 따라서 본 논문에서는 작업자가 수기로 작성한 설비 오류 데이터를 분석하여 연관 규칙 마이닝을 통해 설비 오류 발생 패턴을 도출하는 프레임워크를 제안하고자 한다. 이때, 일반적인 텍스트 분석 기법과 같이 단어를 분석 기준으로 사용하는 경우 전문 용어에 해당하는 설비 오류의 의미를 표현하는 데에 한계가 있다는 점에 착안하여 구절을 추출하여 텍스트 분석 기준으로 사용하였다. 제안하는 프레임워크의 성능을 실제 사례를 통해 검증하였으며, 본 연구 결과를 활용하면 설비 오류를 예방하여 가동률을 높이고 나아가 제조 기업의 생산성 향상에 기여할 수 있을 것으로 기대한다.

목차

초록
ABSTRACT
1. 서론
2. 설비 오류 발생 패턴 도출 프레임워크
3. 사례 연구
4. 결론
References

참고문헌 (31)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-002234721