본문 바로가기
[학술저널]

  • 학술저널
  • Top 10%

휴대폰 리뷰 사례를 중심으로

정재윤(고려대학교) 모경현(고려대학교) 서승완(고려대학교) 김창엽(고려대학교) 김해동(고려대학교) 강필성(고려대학교)

DOI : 10.7232/JKIIE.2018.44.6.442

UCI(KEPA) : I410-ECN-0101-2019-530-000172798

표지

북마크 1

리뷰 0

이용수 269

피인용수 0

초록

Due to the increased amounts of online documents, there is a growing demand for text categorization that categorizes documents into predefined categories. Many approaches to this problem are based on supervised machine learning which couldn’t be applied to unlabeled data. However, large number of documents, such as online cell phone reviews, have no category information and key categories are not predefined. To solve these problems, we propose unsupervised document multi-labeling method based on word embedding and word network analysis. After embedding words in a lower dimensional space using Word2Vec technique, we generate a weight matrix by calculating similarities between words. We create a word network using this matrix and extract the key categories from this network. With key category-weight matrix and co-occurrence matrix, we generate a document-category score matrix. To verify our proposed method, we collect 298,206 cell phone reviews from four review websites. Then, we compared the results of the proposed method with labeled documents from human cognitive perspective.

목차

1. 서론
2. 관련 연구
3. 방법론
4. 실험 설계
5. 실험 결과
6. 결론 및 활용방안
참고문헌

리뷰(0)

도움이 되었어요.0

도움이 안되었어요.0

첫 리뷰를 남겨주세요.
DBpia에서 서비스 중인 논문에 한하여 피인용 수가 반영됩니다.
인용된 논문이 DBpia에서 서비스 중이라면, 아래 [참고문헌 신청]을 통해서 등록해보세요.
Insert title here