메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sunjin Yu (Tongmyong University) Changyong Yoon (Suwon Science College)
저널정보
한국지능시스템학회 INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS INTERNATIONAL JOURNAL of FUZZY LOGIC and INTELLIGENT SYSTEMS Vol.19 No.2
발행연도
2019.6
수록면
97 - 102 (6page)
DOI
10.5391/IJFIS.2019.19.2.97

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper proposes a method for improving performance of clustering algorithm. Among unsupervised learning methods such as clustering, K-means has the advantage of being widely used and simple to implement, but has problems that is heavily influenced by initial centroids and may be got stuck at local minimum. To minimize these shortcomings, this work uses a clustering method with a random swap algorithm based on K-means++ that calculates the distance between data and the center point as a probability. The swap-based clustering method replaces the existing centroids and the concentrated centroids with each other during clustering steps, and then performing re-partitions, and fine-tuning steps with K-means++. The experimental results show the swap-based K-means++ clustering method proposed in this paper has better performance than other methods, as comparing the method proposed with the method of other clustering under various circumstances. As producing datasets of vehicles on general purpose for measuring performance in various experimental environments, we demonstrate the excellence of the proposed method.

목차

Abstract
1. Introduction
2. K-means++ Clustering
3. The Proposed Random Swap based Clustering Algorithm
4. Experimental Results
5. Conclusions
References

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0