메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Sabyasachi Chakraborty (Institute of Digital Anti-Aging Healthcare) Satyabrata Aich (Institute of Digital Anti-Aging Healthcare) Jong Seong Sim (Institute of Digital Anti-Aging Healthcare) Hee-Cheol Kim (Institute of Digital Anti-Aging Healthcare)
저널정보
한국정보통신학회 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING 2019 INTERNATIONAL CONFERENCE ON FUTURE INFORMATION & COMMUNICATION ENGINEERING Vo.11 No.1
발행연도
2019.6
수록면
98 - 102 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Seamless and efficient diagnosis of pneumonia in children and adults is predominantly very important for the physicians. As pneumonia is a disease which kills around 50000 people each year globally therefore adequate treatment and adequate cure of the particular disease must be made essential for the prevention of the unnecessary deaths.
Conventionally for the detection and diagnosis of pneumonia physicians often use X-rays of chest to promptly and economically diagnose the disease The architecture of convolutional neural network devised in the work performs a thorough analysis on the chest x-rays by identifying the spatial placement of the activations that led to the detection of pneumonia in a chest x-ray. The model developed in the work posed an accuracy of 95.62% with an average precision and recall of 96% and 95% respectively.

목차

Abstract
I. INTRODUCTION
II. RELATED WORK
III. METHODS AND RESULTS
IV. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-004-000919845