메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한암학회 Cancer Research and Treatment Cancer Research and Treatment 제50권 제4호
발행연도
2018.1
수록면
1,194 - 1,202 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose The use of prostate-specific antigen as a biomarker for prostate cancer (PC) has been controversial and is, therefore, not used by many countries in their national health screening programs. The biological characteristics of PC in East Asians including Koreans and Japanese are different from those in the Western populations. Potential lifestyle risk factors for PC were evaluated with the aim of developing a risk prediction model. Materials and Methods A total of 1,179,172 Korean men who were cancer free from 1996 to 1997, had taken a physical examination, and completed a lifestyle questionnaire, were enrolled in our study to predict their risk for PC for the next eight years, using the Cox proportional hazards model. The model’s performance was evaluated using the C-statistic and HosmerLemeshow type chi-square statistics. Results The risk prediction model studied age, height, body mass index, glucose levels, family history of cancer, the frequency of meat consumption, alcohol consumption, smoking status, and physical activity, which were all significant risk factors in a univariate analysis. The model performed very well (C statistic, 0.887; 95% confidence interval, 0.879 to 0.895) and estimated an elevated PC risk in patients who did not consume alcohol or smoke, compared to heavy alcohol consumers (hazard ratio [HR], 0.78) and current smokers (HR, 0.73) (p < 0.001). Conclusion This model can be used for identifying Korean and other East Asian men who are at a high risk for developing PC, as well as for cancer screening and developing preventive health strategies.

목차

등록된 정보가 없습니다.

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0