메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국자료분석학회 Journal of The Korean Data Analysis Society Journal of The Korean Data Analysis Society 제17권 제4호
발행연도
2015.1
수록면
1,747 - 1,758 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
There are many time-related data in the world. The properties of the attributes change and they affect the target variable differently as time changes. For example, the oil price was the major indicator for the stock price several years ago. However, the gold price is more influential than the oil price to predict the stock price nowadays. Therefore, it is reasonable to give more weights for the recent instances when we predict the target variable from the past data set. Bagging and random forests use the bootstrapped training set to construct the algorithm. Here, we introduce the modified bootstrap method, the time-adjusted bootstrap which gives the recent instance more weight to be chosen instead of the equal weight for the conventional bootstrap. We experiment with financial data set to predict the movement of KOSPI (Korea composite stock price index). We compare them for 66 cases by the combination of the different data sets or the different degree of the weights for the robust conclusion. For 62 out of 66 cases, our method improves the accuracy over the original bootstrap and the average improvement rates are 3.2% and 2.0% for bagging and random forests respectively. Consequently, bagging with the modified bootstrap shows the better performance over the original bagging and random forests with the modified bootstrap also shows the better performance over the original random forests.

목차

등록된 정보가 없습니다.

참고문헌 (39)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0