메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박연경 (LIG넥스원) 이익도 (LIG넥스원) 이강택 (LIG넥스원) 김두정 (LIG넥스원)
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제20권 제10호
발행연도
2019.10
수록면
277 - 283 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
기술의 발전으로 다양한 부품의 개발 및 상용화는 가능 하였으나, 이에 따라 부품의 단종 주기는 단축 되었다. 이는 수천 품목 이상의 부품을 활용하여 개발하고, 장기간 운영하는 무기체계의 수리 부속 보급을 어렵게 하였으며, 무기체계 운용 가용도 저하의 주요 원인으로 작용하였다. 이러한 문제를 해결하기 위하여 미국 등은 전담 기구를 만들어 대응하고 있으며, 국내에서는 상용 부품단종 예측도구를 활용하여 단종을 예측하고 관리하고 있다. 하지만 상용 부품단종 예측도구에서 단종 정보가 제시되지 않는 부품에 대한 대응 및 관리는 부재한 실정이다. 이에 본 연구에서는 상용부품단종 예측도구에서 제공하는 부품에 대한 정형, 비정형 빅데이터를 수집하고, 데이터 전처리 및 Embedding 과정을 거쳐, 신경망 학습 알고리즘을 적용하여, 상용 부품에 대한 단종 정보 (LC Risk, YTEOL)를 예측하는 방안을 제시하였다. 또한 제시된 모델의 예측 성능을 데이터 기술 통계량과 비교 평가 하여. 본 연구에서 제시한 학습 모델의 타당성을 검증 하였다. 결론에는 본 연구의 활용 방안과 한계점 및 발전 방향에 대하여 기술 하였다.

목차

요약
Abstract
1. 연구 배경
2. 본론
3. 결론
References

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2019-505-001279484