메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김민서 (고려대학교) 문종섭 (고려대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제29권 제6호
발행연도
2019.12
수록면
1,393 - 1,401 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
최근 시스템에 음성 인증 기능이 탑재됨에 따라 화자(Speaker)를 정확하게 인증하는 중요성이 높아지고 있다. 이에 따라 다양한 방법으로 화자를 인증하는 모델이 제시되어 왔다. 본 논문에서는 Short-time Fourier transform(STFT)를 적용한 새로운 화자 인증 모델을 제안한다. 이 모델은 기존의 Mel-Frequency Cepstrum Coefficients(MFCC) 추출 방법과 달리 윈도우 함수를 약 66.1% 오버랩하여 화자 인증 시 정확도를 높일 수 있다. 새로운 화자 인증 모델을 제안한다. 이 때, LSTM 셀을 적용한 Recurrent Neural Network(RNN)라는 딥러닝 모델을 사용하여 시변적 특징을 가지는 화자의 음성 특징을 학습하고, 정확도가 92.8%로 기존의 화자 인증 모델보다 5.5% 정확도가 높게 측정되었다.

목차

요약
ABSTRACT
I. 서론
II. 관련 연구
III. 제안 방법
IV. 실험 및 평가
V. 결론
References

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0