메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
홍선리 (Chungnam National University) 강모세 (Korea Institute of Energy Research) 김건우 (Chungnam National University) 정학근 (Korea Institute of Energy Research) 백종복 (Korea Institute of Energy Research) 김종훈 (Chungnam National University)
저널정보
한국전기전자학회 전기전자학회논문지 전기전자학회논문지 제23권 제4호
발행연도
2019.12
수록면
213 - 221 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
안전하고 최적의 배터리 성능을 유지하기 위해 정확한 충전상태(SOC) 추정 기술이 필수적이다. 본 논문에서는 기존의 전류적산 방법이 가지고 있는 문제를 해결하기 위해 시간 종속성을 가지는 인공지능 기반의 LSTM을 이용한 SOC 추정 방법을 적용하였다. 훈련과 검증에 필요한 데이터는 전기적 실험을 통해 일정 크기로 방전된 전류, 전압, 온도를 수집하였고 학습을 위한 입력데이터의 질을 향상시키기 위해 데이터 전처리를 수행하였다. 또한, LSTM 모델의 구조 및 하이퍼파라미터 설정에 따른 학습 능력과 SOC 추정 성능을 비교하였다. 학습한 모델은 UDDS 프로파일을 통해 검증하였으며, RMSE 0.82%, MAX 2.54%의 추정 정확도를 달성하였다.

목차

Abstract
요약
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 결론
References

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-056-000378367