메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
홍창우 (Yonsei University) 고민승 (Yonsei University) 김홍렬 (Mokpo National Maritime University) 김소연 (Republic of Korea Naval Academy) 허견 (Yonsei University)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제69권 제4호
발행연도
2020.4
수록면
534 - 541 (8page)
DOI
10.5370/KIEE.2020.69.4.534

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
The power load prediction in vessel is an important factor in determining the capacity and number of generators, and in particular the consumption of fuel oil which determines the number of days that can be sailed. In addition, short-term load forecasting is important for the capacity and scheduling of the ESS that will be applied in the future vessel. In this paper, we present a deep stack neural network for short-term load prediction in large vessels. The network is constructed using Convolutional Neural Network (CNN), Bidirectional Long-Short Term Memory (Bi-LSTM), and Long-Short Term Memory (LSTM). CNN is used for spatial feature extraction and Bi-LSTM is used to utilize information at both pre and post stages. Finally, LSTM is used to extract temporal characteristics. The voyage data of the Mokpo National Maritime University training ship was used for the short-term load prediction, and the predicted results are verified by the Mean Squared Error (MSE) and Mean Absolute Error (MAE).

목차

Abstract
1. 서론
2. 모델 설명
3. 사례 연구
4. 결론
References

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-560-000523889