메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터

주제분류

정기구독(개인)

소속 기관이 없으신 경우, 개인 정기구독을 하시면 저렴하게
논문을 무제한 열람 이용할 수 있어요.

회원혜택

로그인 회원이 가져갈 수 있는 혜택들을 확인하고 이용하세요.

아카루트

학술연구/단체지원/교육 등 연구자 활동을 지속하도록 DBpia가 지원하고 있어요.

영문교정

영문 논문 작성에 도움을 드리기 위해, 영문 교정 서비스를
지원하고 있어요.

고객센터 제휴문의

...

저널정보

저자정보

표지
이용수
내서재
1
내서재에 추가
되었습니다.
내서재에서
삭제되었습니다.

내서재에 추가
되었습니다.
내서재에서
삭제되었습니다.

초록·키워드

오류제보하기
Extreme climatic events have increased in frequency and intensity over tha last decades due to global warming. Our study evaluates spatial distribution of changes in climate extreme indices on the Korean Peninsula by downscaled high-resolution data based on an empirical quantile mapping technique and 29 global climate models. Grid‐based observation data with 3.0 km resolution derived from weather stations with data covering 30 years from 1976 to 2005 using a modified PRISM approach were used as reference data for bias-correction. Future projections until 2100 based on two Representative Concentration Pathway (RCP) scenarios of CMIP5 were considered for the variables of daily precipitation, minimum temperature, and maximum temperature. We finally estimated spatial changes in climate extreme indices at 3.0 km resolution. The reproducibility assessment of simple precipitation intensity index (SDII) and annual total precipitation in wet days (PRCPTOT) showed applicability of techniques for downscaling, with the biggest difference of 2.66% and 1.91%, respectively, compared to the observation. The annual maximum 5-day precipitation (Rx5day) and annual maximum value of maximum temperature (TXx) showed highest increase rate under the far future period and RCP8.5 scenario. The derived spatial distribution of climate extreme indices based on a multi‐model ensemble can contribute to vulnerability assessment at a national scale by reducing uncertainties caused by selecting a specific climate model.

목차

ABSTRACT
1. 서론
2. 재료 및 방법
3. 결과 및 고찰
4. 결론
REFERENCES

참고문헌 (34)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-453-000577052