메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jae-Won Kam (Handong Global University) Han-Sol Kim (Handong Global University) Sang-Jun Lee (Handong Global University) Sung-Soo Hwang (Handong Global University)
저널정보
대한전자공학회 IEIE Transactions on Smart Processing & Computing IEIE Transactions on Smart Processing & Computing Vol.9 No.4
발행연도
2020.8
수록면
325 - 335 (11page)
DOI
10.5573/IEIESPC.2020.9.4.325

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
When team members need to share the same virtual object in the same workspace, it is difficult to set the proper viewpoint of the virtual object for all the team members, which is called the pose estimation problem. In this paper, we propose a collaborative augmented reality (AR) framework based on monocular simultaneous localization and mapping (SLAM) to address these issues. The proposed framework consists of a map fusion module and a map quality evaluation module. The map fusion module solves the problem of relative pose estimation on collaborative AR by performing fast overlap detection and optimization. Thanks to this module, each team member can generate a map independently, and the maps can be quickly aligned and merged into a single global map. The map quality evaluation module assesses the quality of the map and provides feedback to team members. It helps each team member create a robust map for pose estimation. In the experiments, we show how the map fusion module can fuse maps with high speed and accuracy. In addition, we show that maps validated with the map quality evaluation module are robust to pose estimation. We also demonstrate the feasibility of the framework by implementing a simple AR application through the proposed framework.

목차

Abstract
1. Introduction
2. Related Work
3. System Overview
4. Map Fusion Module
5. Map Quality Evaluation Module
6. Experiments
7. Application
8. Conclusion
References

참고문헌 (33)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2020-569-001078640