메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술대회자료
저자정보
Jung, Ho-Youl (National Genome Research Instituter, NIH) Heo, Jee-Yeon (The Sensory Research Center, College of Pharmacy, Seoul National University) Cho, Hye-Yeung (National Genome Research Instituter, NIH) Ryu, Gil-Mi (National Genome Research Instituter, NIH) Lee, Ju-Young (National Genome Research Instituter, NIH) Koh, In-Song (National Genome Research Instituter, NIH) Kimm, Ku-Chan (National Genome Research Instituter, NIH) Oh, Berm-Seok (National Genome Research Instituter, NIH)
저널정보
한국생물정보시스템생물학회 한국생물정보시스템생물학회 학술대회 한국생물정보시스템생물학회 2003년도 제2차 연례학술대회 발표논문집
발행연도
2003.1
수록면
221 - 228 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This paper presents a novel method that can identify the individual's haplotype from the given genotypes. Because of the limitation of the conventional single-locus analysis, haplotypes have gained increasing attention in the mapping of complex-disease genes. Conventionally there are two approaches which resolve the individual's haplotypes. One is the molecular haplotypings which have many potential limitations in cost and convenience. The other is the in-silico haplotypings which phase the haplotypes from the diploid genotyped populations, and are cost effective and high-throughput method. In-silico haplotyping is divided into two sub-categories - statistical and computational method. The former computes the frequencies of the common haplotypes, and then resolves the individual's haplotypes. The latter directly resolves the individual's haplotypes using the perfect phylogeny model first proposed by Dan Gusfield [7]. Our method combines two approaches in order to increase the accuracy and the running time. The individuals' haplotypes are resolved by considering the MLE (Maximum Likelihood Estimation) in the process of computing the frequencies of the common haplotypes.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0