본문 바로가기
  • 학술저널

표지

DBpia에서 서비스 중인 논문에 한하여 피인용 수가 반영됩니다. 내서재에 논문을 담은 이용자 수의 총합입니다.

발행기관의 요청으로 개인이 구매하실 수 없습니다.

초록·키워드 목차

Since the early 1980s scholars have applied latent structure and other type of finite mixture models from various academic fields. Although the merits of finite mixture model are well documented, the attempt to apply the mixture model to medical service has been relatively rare. The researchers aim to try to fill this gap by introducing finite mixture model and segmenting inpatients DB from one general hospital. In section 2 finite mixture models are compared with clustering, chi-square analysis, and discriminant analysis based on Wedel and Kamakura(2000)'s segmentation methodology schemata. The mixture model shows the optimal segments number and fuzzy classification for each observation by EM(expectation-maximization algorism). The finite mixture model is to unfix the sample, to Identify the groups, and to estimate the parameters of the density function underlying the observed data within each group. In section 3 and 4 we illustrate results of segmenting 4510 patients data including menial and ratio scales. And then, we show AHP can be identify the attractiveness of each segment, in which the decision maker can select the best target segment. #market segmentation #CRM #mixture model #over-lapping clustering #non-overlapping clustering #fuzzy cluster #AHP

등록된 정보가 없습니다.

[학술저널]

의료서비스에서 혼합모형(Mixture model) 및 분석적 계층과정(AHP)를 이용한 입원환자의 시장세분화에 관한 연구

[학술저널]

의료서비스에서 혼합모형(Mixture model) 및 분석적 계층과정(AHP)를 이용한 입원환자의 시장세분화에 관한 연구

DBpia에서 서비스 중인 논문에 한하여 피인용 수가 반영됩니다.
Insert title here
논문의 정보가 복사되었습니다.
붙여넣기 하세요.